
Acknowledgements 

Selected References 

Conclusions and Future Work 

Static Bifurcations 

Forced Vibrations with Magnets 

Free vibrations with magnets 

Experimental Setup - Instrumentation 

Free vibrations without magnets 

Computing Magnetic Forces and Moments 

Objectives 

Background 

Introduction 
 

 
- Magneto-elastic systems : Motors, generators, mag-lev trains, magneto-elastic load cells. 

- Simple system : Cantilevered beam between two magnets, with periodic forcing on the system 

- Model : Forced, damped Duffing's oscillator (Holmes [1]): 

     - Displays chaotic phenomena, “strange attractor” structure on the Poincaré map. 

     - Only models a double-well potential.  

     - α and β have to be determined experimentally. 

- Can we obtain a model based on physical parameters of the system? (e.g. Magnet spacing) 
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• Develop a computational model for the governing ODE based on physical parameters. 

• Build the magneto-elastic system in lab to compare computational results with experimental 

results (and also with theory of Duffing Oscillator) 

• Explore the statics and dynamics of the system modeled by the computational model. 

• Search for parameters that give rise chaotic motions as predicted by Duffing oscillator theory. 

 

 

 

 

- General model : Magnetic field induces body forces Fx ,Fy and moments C  on the beam. 

- PDE for beam displacement v(s,t) :  (s = arc-length coordinate) 

  

 

 

- Nonlinearities :  Fy , Fx and C depend on beam shape. Fx = Fx(s,v) , Fy = Fy(s,v) , C = C(s,v) 

 

- Assume a single-mode approximation,  

-           is first spatial beam mode for linear scenario without magnets:  

 

 

 

 

- ODE for modal amplitude a(t)     

 

 

 

 

 

 

 

- Measure dynamics in terms of beam tip displacement                                      instead of modal    

amplitude          , since easier to do so experimentally.   

-  Assume linear viscous damping model with damping coefficient δ. 

- For periodic forcing                                   and                                                          , we have 

 

 

 

- Cubic approximation :                                                      → Duffing oscillator 

- Full model : Compute all terms in      

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

• Duffing oscillator : 

• Equilibrium points at (0,0) (saddle) and                 (stable spiral sinks).  

• If we measure a buckled equilibrium position     , and a natural frequency       about that buckled 

position, then we can get a cubic approximation of               from experimental measurements as  

                               Experimentally, we measure      =  0.99 ± 0.02 cm and        = 24 ± 0.1 Hz.      

 

 

 

 

 

 

 

•   

• For low forcing amplitudes, we find co-existence of small-amplitude orbits around one of the 

equilibrium points, and large-amplitude orbits encircling both equilibrium points.   

 

 

- The computational model matches experimental data and theoretical predictions qualitatively. 

- The model offers more flexibility in predicting the behaviour of the system compared to the 

Duffing oscillator theory, as it is based on physical parameters. 

- However, the numerical nature of the model makes it unamenable to analysis.  

- An interesting variant is to consider what happens if the magnetic field strengths are varied 

periodically, and possibly in different phases. This can be done directly using the developed model 

with slight modifications, and experimentally this involves substituting the magnets with solenoids. 
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• Model cylindrical magnets as ideal solenoids.  

Use algorithm by Derby [2] to compute total 

magnetic field                                at beam. 

• For any point on the beam with angle    against 

the vertical, the magnetization of the beam is  

 

Computing Magnetic Forces and Moments 

  

 

• Fix beam tip displacement → Fix beam shape in magnetic field. Partition nodes over beam. 

• Compute all integrals related to           and its derivatives using trapezoidal rule. 

• Compute forces and moments → Compute               for particular beam tip displacement. 

• Repeat over an interval of beam tip displacements → Obtain                      .    

  

 

Calculate derivatives of magnetic field 

using 4th-order central finite difference. 

  

 

- Magnets : 0.21 Tesla magnetic field strength on surface. 

- Beam : 1095 Steel. High yield strength (552 MPa),  Young's Modulus E = 2.06*10^5 MPa. 

- Beam motion visualized using Strain gauge (350 Ω) attached at root of beam. 

- Wheatstone Quarter bridge (Temperature compensated) → Amplifier (Position signal) → Op-amp 

Differentiator (Velocity signal) 

- 10-bit Analog-to-Digital Converter (ADC) on Arduino Uno → Laptop (Matlab) via USB Serial connection. 

- Mean sampling rate = 620 ± 20 Hz.  Uncertainty of  ± 5 digital units in position, ± 10 digital units in 

velocity. (Digital range = 2^10 = 1024) 

 

 

 

 

 

• Damping Ratio: 0.17308  

• Natural Frequency: 

– 17.9  ± 0.3 Hz (Experiment) , 17.81 Hz (Theory) 

 

 

• For higher forcing amplitudes, we have irregular or “chaotic” motions.   

 

 

• Taking the Poincaré map from the time series 

(sample orbit on phase plane every forcing 

period) gives a “strange attractor” structure. 

• This “strange attractor” is predicted by the 

theory for a Duffing oscillator as well [3], and is 

an extremely complicated fractal structure. We 

also observe this from experimental and 

computational results. 

 

 

 

Contributions of computed Magnetic and Elastic forces to Fstatic for d = 3.93 cm         

 

Comparison of full model, its cubic approximation, and experimental cubic approximation         

 

  

 

Basin of attraction of fixed points as computed using the computational model         

 

Orbits from experimental data for various initial displacements         

 

Offset illustration         

 

Bifurcation set over two parameters : Distance between magnets and beam offset         

 

Surface of equilibria over two parameters         

 

• Experimental and computational results for forcing amplitude of 2.9 mm, frequency of 11.8 Hz   

 

 

Experimental time series of “chaotic” motions : forcing amplitude of 4.31 mm, frequency of 10.43 Hz   

 

 

Poincaré map from experimental data. Color of points correspond to time taken from 

time series, with “colder” colors taken earlier in time   

 

 

Poincaré map from numerical simulations of full model.    

 

 

Bifurcation diagram of Poincaré map for increasing magnet field strengths.   

 

 

Project orbit and Poincaré map points for a Period-5 orbit   

 

 


