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Abstract

We present an analytical, numerical and experimental treatment of the magneto-elastic sys-

tem given by Moon and Holmes [1] for a cantilevered ferromagnetic beam between two

magnets. A single-mode approximation is assumed, and the nonlinear quantities in the gov-

erning ODE of the modal amplitude that arise due to magnetic forces and moments are

computed numerically using an algorithm presented by Derby [6] by modelling the magnets

as ideal solenoids. This numerical model enables us to compute the static force distribution

as a function of beam displacements for fixed experimental parameters. The magneto-elastic

system is also built in order to compare the model with experimental data. A strain gauge

is used to measure the deflection of the beam, and an electronic circuit is also constructed

to collect and process data to obtain time series for the position and velocity of the beam.

We find that the model displays good agreement with experiment for the static case where

no external forcing is present. The predictions of buckled equilibria positions, and also of

the natural frequency of vibrations about those positions from the model are close to those

that of experimental results. The topological structure of the static force distribution as

computed from the model is found to be similar to that of the Duffing oscillator in the case

of a double-well potential, as seen by both having similarly-structured basins of attraction

in the static case. Furthermore, we observe cases of single and triple well potentials from the

model as well for certain parameters as well, and bifurcation diagrams and bifurcation sets

are presented for varying physical parameters. Catastrophes involving stable and unstable

surfaces of equilibria are also investigated, and we observe surfaces similar to those seen in

cusp catastrophes[14]. In the presence of external forcing of the system, the experimental

data as well as the numerical model display qualitative agreement with the theory of the

Duffing oscillator [3], and we present examples of “strange attractor” structures over the

Poincaré Map for moderate forcing amplitudes from both experimental and numerical re-

sults. Bifurcations of the fixed points of the Poincaré Map are also investigated using the

numerical model. Discrepancies between the model and experimental data are highlighted,

and limitations of the model are discussed in relation to experimental results as well as with

consideration to the Duffing oscillator as an analytical model of the system.
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5.6 Experimental Poincaré map from experimental data with A0 = 3.95 mm and

f = 10.43 Hz taken over 2 hours.“Colder” colors indicate points taken earlier

in the time series,“hotter” colors indicate points that are taken later. Presence

of color gradients indicates slight shift in forcing frequency, resulting in a slight

shift in the structure of the strange attractor. . . . . . . . . . . . . . . . . . 62

5.7 Logarithm of power spectra for time series corresponding to strange attractor

motions. Linear fit is taken over 0 ≤ f ≤ 80 Hz. . . . . . . . . . . . . . . . . 62
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S Strange attractor of Poincaré map . . . . . . . . . . . . . . . . . . . . . . 57

xiv



Chapter 1

Introduction

Nonlinear dynamics is usually introduced to students with canonical examples of nonlinear

systems. One of these systems is the Duffing oscillator, whose dynamics is given by Duffing’s

equation:

ẍ = αx− βx3 − δẋ+ Pcos(ωt). (1.0.1)

The Duffing oscillator is an example of a non-linear, second-order, non-autonomous,

periodically-forced oscillator with non-linear restoring force. It is a relatively simple model

which is known to display chaotic solutions in response to periodic forcing [15].

A physical system that can be modelled by Duffing’s equation is a beam that is clamped at

one end and buckled at the other end between two magnets on a platform which is periodically

forced. (See figure 1.1) Moon and Holmes [1] have showed that the dynamics of this physical

system can be described by Duffing’s equation with α > 0 and β > 0, corresponding to the

dynamics of a particle in a double-well potential. Furthermore, experiments by Moon and

Holmes have also demonstrated chaotic motions when moderate periodic forcing is applied

to the platform, as evidenced from the structure of a strange attractor recorded on the

Poincaré map. Under such chaotic motions, the beam jumps erratically and unpredictably

back and forth from one equilibrium point to the other. Thus, such a physical system is

invaluable not only as a pedagogical example of non-linear systems which display chaotic

motions, but also as a simple model of possible dynamics in magneto-elastic systems such

as motors, generators, Maglev trains and magneto-elastic load cells.

To compare the dynamics of Duffing’s equation with that of the physical system, one

would normally have to build the system, perform experiments on the system and then

derive the parameters of Duffing’s equation (α, β and δ) from the experimental data. Com-

puting these parameters also enables one to make further predictions about the system via
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Figure 1.1: Physical analogue of the Duffing oscillator, taken from figure 3 in [8].

numerical simulations(e.g. for which forcing amplitudes or frequencies would one obtain

chaotic motions).

However, in some cases one would like to be able to specify the physical parameters of the

system (magnet spacing, beam dimensions, magnet size and so on) and obtain results in the

form of simulation of a time series for the dynamics of the beam before building the system.

Not only does this give a good estimate of what range of system parameters are feasible, it

allows one to derive a more accurate approximation to the restoring forces compared to the

cubic of equation 1.0.1, and also to run optimization and sensitivity analyses to find chaotic

motions and also possibly simulate a control law on the system based on physical parameters

to stabilize periodic orbits. Successful control of such a physical system has already been

demonstrated by Hikihara and Kawagoshi based on forcing frequency as a control parameter

[16].

Furthermore, it allows for the simulation of cases in which the symmetry of the system is

broken (e.g. field strength of the magnets are different, or the beam is not centered between

the magnets). In these cases Duffing’s equation no longer models the system accurately since

the restoring force is no longer symmetric around the center point between the magnets.

Examples of these cases will be presented below, although the focus will be more on the

symmetric case.

In the sections below the partial differential equation governing the system as given by

Moon and Holmes in [1] is first presented. An analytic expression for the mode shape φ(s)

of a single-mode approximation is then given, which will be used in numerical computations.

The ordinary differential equation for the modal amplitude a(t) is also presented, which will
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be the equation that is simulated.

In order to compute the non-linear quantities associated with the magnetic field, the

magnets are treated as ideal finite solenoids, and the corresponding magnetic fields are

computed using an algorithm given by Derby [6]. The magnetic forces and moments are

then computed. Combining the magnetic forces and moments with numerical integrations

of φ(s) and its derivatives gives all the information needed to compute the static forces on

the beam, and thus it is possible to numerically simulate the ODE for the dynamics of a(t).

Two different ways of numerically simulating the resulting ODE are compared: The first

way is to simulate the system using the fully computed static force distribution, the second

way is the approximate it using a cubic polynomial.

The magneto-elastic system is also constructed, and experimental data is taken from

it to calculate parameters of Duffing’s equation. This allows us to compare experimental

results with numerical simulations of the system based on physical parameters of the system.

Poincaré maps generated from experimental data and numerical simulations are presented.

Bifurcation diagrams based on the developed computational model are also presented.
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Chapter 2

Theory and Computations for Model

In this chapter we introduce the governing partial differential equations for the motion of the

beam as given by Holmes in [1], and from there we derive the governing ordinary differential

equation (ODE) for the modal amplitude a(t) of a single-mode approximation. We then

explain the computational methods used to calculate the terms in the governing ODE, as

well as the simplifications to the resulting model that would give the equations for the Duffing

oscillator.

2.1 Theoretical model

We first describe the dynamics of the system. The coordinate system used for the clamped

beam is shown below in figure 2.1. Define L as the length of the undeformed beam. At

equilibrium (no magnetic or shaker forces), the beam lies along the x-axis.

Define s as the arc-length coordinate along the length of the beam, where s = 0 at the

origin of the coordinate system shown above (the clamping point of the beam) and s = L at

the tip of the beam. Clearly s ∈ [0, L].

Thus, for any point on the beam with coordinate s along the length of the undeformed beam,

we can describe its displaced position from equilibrium as (s + u(s, t), v(s, t)), where u(s, t)

is the displacement in the x-direction and v(s, t) is the displacement in the y-direction.

The primary variable of interest is the y-displacement of the beam from equilibrium,

v(s, t) in the presence of a static, non-homogeneous magnetic field. Moon and Holmes showed

that the partial differential equation describing v(s, t) can be written as equation 2.1.1. Here

the dependence of various quantities on s, v and t is emphasized, and a dependence on
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Figure 2.1: Coordinate system and related quantities for the cantilevered beam, taken from
figure 4(a) in [1].

(s, v) is shorthand to mean dependence on (s, v(s, t)). It is important to remember that

the quantities related to the magnetic field depend on the overall shape of the beam in the

magnetic field. An alternate derivation of the equation 2.1.1 based on linear beam theory

using differentials is presented in appendix A.

Fy(s, v)−D∂
4v(s, t)

∂s4
+

∂

∂s

(
−C(s, v) + T (s, v)

∂v(s, t)

∂s

)
= m

(
∂2v(s, t)

∂t2
+
∂2V0(t)

∂t2

)
,

(2.1.1a)

T (s, v) =

∫ L

s

Fx(s, v) ds, (2.1.1b)

where:

v is the displacement of the beam in the y direction.

Fx and Fy are the magnetic forces per unit length along the beam in the x and y direction

respectively.

C is the moment per unit length along the beam due to magnetic forces

m is the mass per unit length along the beam.

V0 is the position of the platform that undergoes external excitation (and is connected to

the whole system) relative to its stationary state.

D is the flexural rigidity of the beam, given by D = EI, where E is the Young’s Modulus

and I is the area moment of inertia given by I = w43

12
for a beam of width w and

5



thickness 4.

The term T (s, v) in equation 2.1.1 can be interpreted as the tension in the beam created

by the axial magnetic forces along the beam, Fx(s, v).

Equation 2.1.1 was derived by Moon and Holmes with the following assumptions:

1. The beam is inextensible. This is equivalent to the constraint
(
1 + ∂u

∂s

)2
+
(
∂v
∂s

)2
= 1.

([20] ch.9 pg. 339)

2. We assume a linear elastic model for the beam with a constant flexural rigidity, and

thus all nonlinear forces are due to the magnetic field. Therefore, all nonlinearities

in slope and curvature in the beam can be neglected since experimentally the elastic

behaviour of the beam is almost linear under nonmagnetic forces. This is equivalent

to the approximation θ ≈ ∂v
∂s

.

3. Gravitational forces are neglected on the basis that the elastic and magnetic forces on

the beam are much greater than the gravitational forces.

4. We also make the assumption that u(s, t) ≈ 0 in the linear beam approximation. This is

reasonable under the expectation that the magnitude of the elastic and magnetic forces

in the x-direction are much smaller than the magnitude of the forces in the y-direction.

This is based on the cantilevered setup of the beam between the two magnets, and it is

indeed observed from the experimental setup that the magnitude of displacements in

the y-direction is much greater than the magnitude of displacements in the x-direction.

Thus, the quantities in equation 2.1.1 only depend on the displacement of the beam in

the y-direction. Henceforth, all mention of “beam displacement” will be referring to

the beam displacement in the y-direction.

We introduce notation for partial differentiation. Henceforth, primed terms ([]′) denote

partial differentiation with respect to s, and over-dotted terms ([̇]) denote partial differenti-

ation with respect to t. We can thus rewrite equation 2.1.1 as

Fy(s, v)−Dv′′′′ − C ′ + [T (s, v)v′]
′
= m

(
v̈ + V̈0

)
, (2.1.2a)

T (s, v) =

∫ L

s

Fx(s, v) ds. (2.1.2b)

To convert the partial differential equation in equation 2.1.2 to a ordinary differential

equation, a single-mode approximation for the beam displacement is prescribed. This is

equivalent to specifying v(s, t) = φ(s)a(t), where φ(s) defines the spatial mode shape and
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a(t) the time-dependent amplitude. Experimentally, we observe no buckling of the beam to

the second mode due to the relatively low compressive axial loads and moments compared

to the lateral forces. Therefore, we consider the single-mode approximation as a good one

in describing the beam shape over time. Furthermore, Holmes and Marsden have showed

[4] that this approximation does not result in a loss in the qualitative information about

the behaviour of the beam over time, a result due to the application of the Center Manifold

Theorem ([2],[5]) to the dynamics of the problem. The result is that we can ignore all but

the most unstable mode(s) of the vibration, and thus can use the single-mode approximation

since it is the dominant unstable mode of the system.

Here we shall take φ(s) as the first beam mode for the linear scenario −Dv′′′′ = mv̈, which

disregards all magnetic forces on the beam. We solve for φ(s) by specifying v(s, t) = φ(s)a(t)

in equation 2.1.2, solving the equation by separation of variables and imposing boundary

conditions for a clamped-free beam.

One might wonder whether it is possible to obtain a more accurate equation for φ(s)

by solving the non-linear scenario. That is, specifying v(s, t) = φ(s)a(t) for equation 2.1.2

and then trying to solve for φ(s) based on numerically computed values for Fy , Fx and

C (The numerical method that can be used to obtain these quantities will be discussed

later in section 2.1.2). This will most likely involve numerical solutions for φ(s) as equation

2.1.2 is nonlinear. However, the nonlinearities involved in this problem are not trivial. Fy ,

Fx and C in equation 2.1.2 depend on the displacement v (and therefore φ(s)) themselves,

and so one will likely have to resort to an iterative method to compute φ(s). Furthermore,

even if one manages to obtain such a numerical solution, another downside of lacking an

analytic solution for φ(s) is the lack of precision later on when we have to compute the

fourth derivative of φ(s). Thus, in the view of a simpler and more manageable model, we

choose to solve for φ(s) based on the linear scenario mentioned in the previous paragraph.

We do note that it is possible to make this easier by assuming that Fx = 0 and that T

and C are constant. Analytical solutions for this case are known [13] but the nonlinearities

will still have to be dealt with using an iterative method as one has to assume some φ(s)

to numerically compute Fx(s, v) and C(s, v) which would then be averaged to obtain the

constants T and C.

For the classical linear beam equation, −Dv′′′′ = mv̈. For the cantilevered spatial bound-

ary conditions corresponding to v(0, t) = v′(0, t) = 0 and v′′(L, t) = v′′′(L, t) = 0, we obtain

the following expressions that define φ(s) [12]:

φ(s) = c [K(sinh(ks)− sin(ks)) + (cosh(ks)− cos(ks))] , (2.1.3a)
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Figure 2.2: Plot of φ(s).

where k is defined by the constraint

cosh(kL)cos(kL) = 1, (2.1.3b)

implying that kL ≈ 1.87510407, and

K = −cos(kL) + cosh(kL)

sin(kL) + sinh(kL)
. (2.1.3c)

The constant c in equation 2.1.3a is chosen such that
∫ L
0
φ2(s) ds = 1, and we determine

c numerically. Also, we can easily derive the analytical forms of φ′(s), φ′′(s) etc. from

equation 2.1.3a. Having specified an analytic equation for φ(s), we substitute the single-

mode approximation v(s, t) = φ(s)a(t) into equation 2.1.2, multiply all terms by φ(s) and

take the integral of all terms over the beam length. The final result is a differential equation

for the modal amplitude a(t). The full derivation of these steps are given in appendix B.

mä =

∫ L

0

C(s, a)φ′(s) ds−
[∫ L

0

T (s, a)(φ′(s))2 ds+D

∫ L

0

(φ′′(s))2 ds

]
a

+

∫ L

0

Fy(s, a)φ(s) ds−mV̈0(t)
∫ L

0

φ(s) ds.

(2.1.4)

Note that the signs of the terms containing T and C in equation 2.1.4 have been flipped

compared the same terms in equation 2.1.2 due to the use of integration by parts.
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In equation 2.1.1 we emphasized the dependence of quantities on s and v. In equation

2.1.4 the dependence of quantities on v has been replaced by a dependence on a since in

the single-mode approximation, the dependence of v(s, t) on φ(s) is already captured by the

dependence on s, and thus we represent the dependence of v(s, t) on a(t) by the dependence

on a.

Equation 2.1.4 is the governing ODE for the modal amplitude a(t), and will be the main

equation that will be used in numerical simulations.

Rearranging equation 2.1.4, we get

mä = −
[∫ L

0

T (φ′)2 ds+D

∫ L

0

(φ′′)2 ds

]
a+

∫ L

0

Fyφ ds+

∫ L

0

Cφ′ ds−mV̈0
∫ L

0

φ ds. (2.1.5)

If we define

Fstatic(a) =
1

m

[
−
(∫ L

0

T (φ′)2 ds+D

∫ L

0

(φ′′)2 ds

)
a+

∫ L

0

Fyφ ds+

∫ L

0

Cφ′ ds

]
, (2.1.6)

then we can rewrite equation 2.1.5 as

ä = Fstatic(a)− V̈0
∫ L

0

φ ds. (2.1.7)

Equation 2.1.7 defines a vector field over a, ȧ and t. The V̈0
∫ L
0
φ ds term is a non-inertial

term that represents the contribution of the external shaker excitation to the dynamics of

the modal amplitude. In the static case, the platform is stationary (no excitation), then

V0(t) = 0 for all t and thus equation 2.1.7 takes the form ä = Fstatic(a), an autonomous

ODE.

Equation 2.1.6 is thus the governing equation behind the dynamics of the system in the

static case. Looking at the terms in Fstatic, we see that we can write the equation as

Fstatic(a) = Fbeam(a) + Fmagnetic(a), (2.1.8)

where

Fbeam(a) = − 1

m
D

∫ L

0

(φ′′(s))2 ds ∗ a (2.1.9)

is the contributing term due to the elasticity of the beam and

Fmagnetic(a) =
1

m

(
−
∫ L

0

T (s, a)(φ′(s))2 ds ∗ a+

∫ L

0

Fy(s, a)φ(s) ds+

∫ L

0

C(s, a)φ′(s) ds

)
(2.1.10)
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is the contributing term due to the presence of the magnetic field.

We can further separate the terms in Fmagnetic(a) and write them as Fmagnetic(a) =

Fmoment(a) + Faxial(a) + Ftransverse(a). We define these terms here so that we can make

comparisons about their relative magnitudes later on.

Fmoment(a) =
1

m

∫ L

0

C(s, a)φ′(s) ds, (2.1.11a)

Faxial(a) = − 1

m

∫ L

0

T (s, a)(φ′(s))2 ds ∗ a, (2.1.11b)

Ftransverse(a) =
1

m

∫ L

0

Fy(s, a)φ(s) ds. (2.1.11c)

Going back to equation 2.1.7, if we assume that V0 = A0 cos(ωt), then we have

ä = Fstatic(a) + ω2A0

∫ L

0

φ ds cos(ωt). (2.1.12)

In our experimental setup, we measure the motion of the beam using readings from a

strain gauge attached near the root of the beam. In order to calibrate the strain gauge

readings with the displacement of the beam, the most convenient method is to measure a

beam tip displacement in the y direction using a caliper and calibrate the corresponding

strain gauge reading with that measurement. Thus, it is convenient for us to specify the

equations of motion in terms of the beam tip displacement instead of the modal amplitude in

order to compare the results from numerical simulations of the model with the experimental

results.

Let vL(t) represent the horizontal displacement of the beam end from its equilibrium

position at y = 0. Since vL(t) = v(L, t) = a(t)φ(L), we have

v̈L = Fstatic(vL) + P cos(ωt), (2.1.13)

where P = ω2A0φ(L)
∫ L
0
φ ds and Fstatic(vL) = φ(L)Fstatic(a). Adding a term to account for

damping gives

v̈L = Fstatic(vL)− δv̇L + P cos(ωt). (2.1.14)

A linear viscous damping model is used. We assume that the damping coefficient δ captures

the effect of damping due to air resistance, small eddy currents induced by magnetic fields

(if they are present) and other external sources such as tape attached to the beam. δ can
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either be calculated from experimental data, or a damping ratio ζ can be stipulated and

the corresponding value for δ can be calculated as δ = 2ζω0, where ω0 =

√
D
∫ L
0 (φ′′)2 ds

m
, the

natural frequency of the beam without the presence of any magnetic fields [20].

We take equation 2.1.14 as the governing ODE for vL. We can numerically simulate this

equation using three different methods, explained below:

1. Compute Fstatic(vL) by computing the total magnetic field around the beam. We will

refer to this as the Full Model. The governing ODE is simulated using by interpolating

the computed values of Fstatic(vL) as the beam moves through the magnetic field and

as vL changes accordingly.

2. Approximate Fstatic(vL) by a cubic polynomial to give Duffing’s equation:

v̈L = αvL − βv3L − δv̇L + P cos(ωt), (2.1.15)

where α and β can be determined either by:

(a) Fitting a cubic to the computed Fstatic(vL). We will refer to this as the Compu-

tational Cubic Approximation.

(b) Calculating them from the experimental data: α =
ω2
1

2
and β =

ω2
1

2a20
, where ω1

is the natural frequency of the beam about one of the buckled horizontal beam

tip positions a0. (For derivation, see section 4.2.1) We will refer to this as the

Experimental Cubic Approximation.

These different methods have their own advantages and disadvantages. The full model

(method 1) provides the most accurate picture of the vector field governing the dynamics of

the system as it makes no approximations about the nature of the magnetic forces. How-

ever, Fstatic(vL) is defined numerically and hence not as easy to examine analytically. The

computational cubic approximation (method 2a) is not as accurate as method 1, but is a

good approximation for small beam tip deflections (this will be explored later on). More

importantly, the cubic approximation gives Duffing’s equation, the dynamics of which have

been analysed extensively [3]. Furthermore, coefficients of the cubic approximation, α and

β, allow us to compare the magnitude of the linear forces (elastic and magnetic) with that

of the non-linear component of the magnetic forces. They also allow us to compare our

experimental data (method 2b) to the theoretical model (method 2a), as it is not easy to

measure the force distributions on the beam tip experimentally, but it is easier to measure

the buckled beam position about one of the magnets as well as the natural frequency about

that position, and therefore calculate α and β.
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2.2 Computation of restoring forces

We now seek to calculate

Fstatic(vL) =− 1

m

[∫ L

0

T (s, vL)(φ′(s))2 ds+D

∫ L

0

(φ′′(s))2 ds

]
vL

+
φ(L)

m

∫ L

0

Fy(s, vL)φ(s) ds+
1

m

∫ L

0

C(s, vL)φ′(s) ds.

(2.2.1)

Since the analytic form of φ(s) and its derivatives are easily obtained from equations 2.1.3a,

2.1.3b and 2.1.3c , the integral of quantities related to φ(s) and its derivatives can be obtained

either analytically or via numerical integration. We obtain those quantities via numerical

integration using a trapezoidal rule [18].

The quantities that are more complicated to calculate are those related to the magnetic

field, which are Fx(s, vL), Fy(s, vL) and C(s, vL). Intuitively, they should depend on two

main factors : The magnetic field, and the shape of the beam in the magnetic field. The

goal is to be able to compute these quantities based on experimental setup parameters. In

terms of experimental setup parameters, the magnetic field depends on the field strengths

of the magnets, the shape of the magnets, and the distance between the two magnets. The

shape of the beam depends on the dimensions of the beam, the offset position of the beam

relative to the two magnets, and also the beam mode φ(s) and the beam tip displacement

vL.

The key point is that we can compute the magnetic field at any given point numerically.

If we model the cylindrical magnets as ideal solenoids, then from Derby [6] we can calculate

the magnetic field due to an ideal solenoid using a computationally efficient algorithm for the

generalized complete elliptic integral in the expression for the magnetic field of the solenoid.

The evaluation contains a term that depends on nI, where n is the number of turns of the

solenoid and I is the current through the solenoid. Since we are using cylindrical magnets,

we can calculate the parameter nI based on the magnetic field strength at the surface of

the magnet along the center axis, which is provided by the supplier. That is, if Bsurface is

the magnetic field strength at the surface along the center axis of a cylindrical magnet with

radius r and height 2h , then

nI =

√
4h2 + r2

h

Bsurface

µ0

. (2.2.2)
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At any given point on the beam, if we know the Magnetic Field B due to the magnets

(with components Bx and By in the x and y directions respectively), then we can calculate

the magnetic forces F (per unit length) as [9][10]

F = M · ∇B, (2.2.3a)

or (
Fx

Fy

)
=

(
Mx

My

)
·

(
∂Bx
∂x

∂Bx
∂y

∂By
∂x

∂By
∂y

)
=

(
Mx

∂Bx
∂x

+My
∂Bx
∂y

Mx
∂By
∂x

+My
∂By
∂y

)
. (2.2.3b)

where M is the magnetization per unit length of the beam due to the magnetic field, and all

quantities are functions of s and vL. Here, we are neglecting the magnetic field produced by

the magnetization of the steel beam itself.

The moment per unit length C is also given as

C = M×B. (2.2.4)

If we assume that:

1. magnetic self-forces on the beam are neglected,

2. magnetic hysteresis is neglected,

3. the dependence of beam magnetization on curvature is small,

4. locally, the magnetic field can be treated as uniform,

5. the beam has uniform cross-section along its length,

then the magnetization M can be written as (See appendix C for derivation.)

(
Mx

My

)
=

χA

µ0µr

(
(1 + χcos2(θ))Bx + χcos(θ)sin(θ)By

χcos(θ)sin(θ)Bx + (1 + χsin2(θ))By

)
, (2.2.5)

where θ is the angle of the point of the beam relative to the x-axis and A is the cross-

sectional area of the beam. χ is the volumetric magnetic susceptibility of the beam material

(We take χ ≈ 103 [30]), µr = χ + 1 is the relative magnetic permeability and µ0 is the

magnetic constant, µ0 = 4π ∗ 10−7 V s
mA

.
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Furthermore, substituting equation 2.2.5 into equation 2.2.4 allows us to write the mag-

nitude of the moment per unit length as

C =
χ2A

2µ0µr

[
2BxBy cos(2θ)− (B2

x −B2
y) sin(2θ)

]
. (2.2.6)

We use the approximation θ(s, vL) ≈ vL(t)φ′(s). Furthermore, we calculate the spatial

derivatives of the magnetic field (∂Bx
∂x
, ∂Bx
∂y

etc.) for a given point numerically using a 4th-

order central finite difference [18] of the magnetic field, which requires us to evaluate the

magnetic field at points near the point on the beam. The distance between these points is

chosen to be very small, on the order of 10−11 m, relative to an experimental length scale of

10−1 m.

Hence, for any given point on the beam, we can calculate the magnetic field (Bx, By)

at that point (and at nearby points) due to the magnets, and thus calculate Fx, Fy and C.

Note that if we specify a beam tip displacement vL, then we in turn already specify a beam

shape since we are using the single-mode approximation.

We can thus compute each term in equation 2.2.1 as follows:

1. Partition an interval in which the beam tip displacement vL lies over into a finite

number of points. A grid of 10000 points is usually chosen over an interval between

the magnet centers. Experimentally, this corresponds to a grid size on the order of

10−6 m.

2. Partition the beam length [0, L] into a finite number of points. A density of 1000

points is usually used. Each point represents a node on the beam, with arc-coordinate

s ∈ [0, L]. Experimentally, this corresponds to a grid size on the order of 10−4 m.

3. Calculate
∫ L
0

(φ′′(s))2 ds and
∫ L
0
φ(s) ds using a trapezoidal rule.

4. Fstatic(vL) is then computed according to the pseudocode given below:

For each beam tip displacement vL

For each node s

- Calculate the node displacement v(s) = φ(s)
φ(L)

vL and angle θ = φ′(s)
φ(L)

vL.

- For the displaced node at location (s, v(s)),

calculate the magnetic field (Bx, By) and hence Fx, Fy and C as given above.

- Evaluate φ(s), (φ′(s))2 and (φ′′(s))2.

End

- Evaluate the integrals in equations 2.1.11a, 2.1.11b and 2.1.11c
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using a trapezoidal rule.

- Calculate Fstatic(vL) by summing the previously computed integrals.

End

We thus have computed Fstatic(vL) over the interval initially chosen for vL based on physical

parameters. This now allows us to simulate equation 2.1.14 numerically (this is the full

model). The actual code used is presented in appendix F.
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Chapter 3

Experimental Setup

In this chapter the details of the experimental setup are discussed. We present the physical

parameters of the apparatus as well as the electronic circuit that is used to collect and process

the strain gauge signal.

3.1 Mainframe, shaker and instrumentation

The experimental setup is shown figure 3.1.

The mainframe is constructed out of hard white maple wood 0.5 inches thick, with

the wood pieces joined using three wood screws per connection. The wooden pieces are

oriented such that the grains are along the longitudinal direction of the mainframe to provide

maximum resistance against bending/flexure of the mainframe due to the forcing from the

shaker. The mainframe occupies a volume of 8.73 cm x 7.63 cm x 15.29 cm (all ± 0.01 cm).

A steel strip of 1018 steel 0.9 ± 0.2 mm thick, 8.742 ± 0.005 cm long and 3.04 ± 0.01

cm wide is glued to top surface of the bottom part of the mainframe (henceforth referred to

as ”base”) to provide an attachment surface for the magnets. A thin steel strip of 1095 steel

(blue tempered spring steel) with thickness 4 =0.25 ± 0.02 mm and width w =0.95 ± 0.05

cm serves as the beam to be cantilevered from the top of the mainframe. The steel of the

beam is chosen for its high yield strength (552 MPa), since it is important that the beam

does not undergo plastic deformation under the magnetic and elastic forces. The Young’s

Modulus of the steel is E = 2.06 ∗ 105 MPa, and the density ρ is 7.83 ± 0.02 g cm−3. Two

wood screws are used to cantilever the beam against the mainframe using another piece of

wood. The length of the cantilevered beam, L = 10.88 ± 0.05 cm. The vertical distance

from the base to the cantilever point is 12.80 ± 0.03 cm, thus the distance from the beam
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Figure 3.1: Experimental setup.

tip to the base of the mainframe in the is 1.92 ± 0.05 cm.

Two cylindrical magnets each with radius r = 0.5 inches and height h =0.25 inches are

used. The magnets each have a magnetic surface field strength of Bsurface = 0.21 Tesla.

We ensure that the polarities of the face-up sides of the magnets are the same when they

are attached to the steel strip described in the previous paragraph. It is worth noting that

there is a non-zero minimum separation distance between the magnets that can be achieved

due to the repelling magnetic forces between the magnets. This separation distance can be

decreased by roughening up the surface of the steel strip using sandpaper. In our case the

minimum distance between magnet centers is 3.74 ± 0.01 cm.

A hole is drilled through the side of the mainframe to serve as a connection point to the

shaker. The position of the hole is such that its axis passes through the vertical and lateral

component of the center of mass of the mainframe so that undesired vibration modes in

the mainframe from the shaker are minimized. In order to do this, the mainframe and the

magnets are modelled in Creo Pro/Engineer, and the center of mass is computed from the

model. We measure that the largest deviation from the computed center of mass is roughly 1

mm. See figure 3.2 for an illustration of the setup dimensions. Pictures of the Pro/E model

and the computed mass properties are given in appendix D.

The mainframe is fastened against the shaker using a machine screw. We make sure that

the mainframe is upright and not tilted sideways during the fastening process. See figure 3.3
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Figure 3.2: 2-D Cross section of setup with dimensions in given in cm. Figure not drawn to
scale.

for a picture of the mainframe with the shaker.

The shaker is a K2007E01 SmartShaker electromagnetic shaker (The Modal Shop, Cincin-

nati OH) that contains an integrated amplifier. An Agilent 33220A signal generator (Agilent

Technologies, Santa Clara CA) is used to supply the driving signal to the shaker. The driv-

ing signal is always sinusoidal, and the frequency and peak-to-peak voltage are varied. The

driving signal from the signal generator is viewed in an oscilloscope to ensure that the signal

is as desired before connecting the signal generator to the shaker. In order to secure the

shaker so that it does not move due to the vibration, the bottom of the shaker is also taped

to the surface that it is resting on. We assume that the connection of the mainframe to the

shaker is secure enough, and that the mainframe is rigid enough so that the motion of the

shaker translates to the same motion of the mainframe. We also assume that the forcing

frequency and amplitude from the shaker are the same as that of the driving signal to the

shaker from the signal generator.

In order to increase the damping of the system, strips of Scotch tape 3.92 ± 0.01 cm

long, 0.96 ± 0.01 cm wide and 1.5 ± 0.2 mm thick are attached to both sides of the beam

near the root of the beam (close to the cantilever point).
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Figure 3.3: Experimental setup of mainframe attached to shaker. Also noticeable are the
magnets and also the strips of tape attached to the root of the beam

3.2 Data collection

A strain gauge is attached using a Loctite 401 adhesive near the root of the beam. We use

an SGD-7/350-LY11 Omega strain gauge (Omega, Stamford CT) with a 350 Ω resistance

and gauge factor of 2.13. The strain gauge is chosen such that the design contact surface

is that of steel. We construct an electronic circuit on a breadboard to process the analog

signal from the strain gauge. The constructed circuit is described as follows:

The leads from the strain gauge are soldered to thin wire, which are then connected

to a Wheatstone quarter-bridge circuit that is temperature-compensated. The temperature

compensation is achieved by attaching another strain gauge to the Wheatstone bridge that

is in a similar setup to the experimental conditions of the first strain gauge.

The signal from the Wheatstone bridge is then connected to a AD623 Instrumentation

Amplifier (Analog Devices, Norwood MA) to obtain an amplification of the signal by a factor

of 260, since the change in the output signal of the Wheatstone bridge is very low due to

the low change in resistance of the strain change in response to strain. (change of 0.7 Ω

per millistrain). A potentiometer connected to a positive voltage at one end and to the

reference input of the AD623 at the other allows us to calibrate the output signal so that

the output signal is at an appropriate voltage value when the beam tip displacement is zero.

The output signal from the amplifier is thus treated as a signal that is proportional to the

beam tip displacement. Furthermore, this output signal is also connected to an op-amp

19



differentiator circuit, allowing us to measure the velocity of the beam tip as well. For the

schematic of the circuit used, please refer to appendix E

The output signals from both the amplifier (representing position) and differentiator

(representing velocity) are connected to an Arduino Uno (Arduino, Adafruit Industries,

Varick St NY). The Arduino is a single-board microcontroller, which has an on-board 10-bit

Analog-to-Digital converter (ADC), an 8-bit ATmega328 microcontroller, as well as a USB

port. Using the Arduino interface, we program the Arduino to read in both position and

velocity signals that have been digitized by the ADC and send them over a serial port at a

transmission rate of 115200 baud via USB. The data sent over the serial connection via USB

to a laptop is read in using Matlab. A mean sampling rate of 620 ± 20 Hz was achieved, or 1

measurement every 1.61 ± 0.05 ms. There is an uncertainty of ± 5 digital units in position

and an uncertainty of ± 10 digital units in velocity due to electrical noise. The digital range

of both the position and velocity as sampled from the 10-bit ADC is 210 = 1024 digital units.

To determine the beam tip displacement corresponding to a digital unit, the distance

between the buckled beam tip positions is measured using a caliper, and the corresponding

digital readings for each beam tip position are also recorded. The displacement per digital

unit is obtained by dividing this measured distance by the difference in digital readings

20



Chapter 4

Results and Discussion I

In this chapter we focus on results obtained in the case where no forcing from the shaker

is present. We first discuss the results obtained from free vibrations where no magnets are

present, where the main purpose is to check that experimental results agree with classic

Euler-Bernoulli beam theory, and also to calculate the damping ratio ζ and obtain the

damping coefficient δ from there. We then discuss the case of free vibrations where magnets

are present but without forcing from the shaker. We first present the relevant theory for

the Duffing oscillator, and then compare the experimental results with the computational

model in terms of buckled beam positions, natural frequencies and basins of attraction. We

then present an analysis of the bifurcations of the system as various physical parameters are

varied based on numerical simulations of the full model.

4.1 Free vibrations without magnets

In the absence of a magnetic field, all quantities related to the magnetic field are equal

to zero. Thus, Fx, Fy and C in equation 2.1.1 are equal to zero. If we have no forcing

from the shaker, then the partial differential equation for the system (without damping) is

−Dv′′′′ = mv̈, which is the classical Euler-Bernoulli equation [20] with no external loads. If

we assume a single-mode approximation, equation 2.2.1 gives

Fstatic(vL) = −
D
∫ L
0

(φ′′(s))2 ds

m
vL, (4.1.1)
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and thus, from equation 2.1.14, the governing ODE for the system is

v̈L = −
D
∫ L
0

(φ′′(s))2 ds

m
vL − δv̇L. (4.1.2)

Equation 4.1.2 for the beam tip displacement vL is the equation for a damped harmonic

oscillator. The (undamped) natural frequency is

ω0 =

√
D
∫ L
0

(φ′′)2 ds

m
. (4.1.3)

The damping ratio is ζ = δ

2mD
∫ L
0 (φ′′(s))2 ds

, and the damped frequency is given as ωd =

ω0

√
1− ζ2 [21].

In our case the system is under-damped (ζ < 1), and the solution to equation 4.1.2 is

given as vL(t) = e−ζω0t[Acos(ωdt) + Bsin(ωdt)], where A and B are constants dependent

upon the initial conditions vL(0) and v̇L(0) [22]. Thus, fitting an exponential curve to the

amplitude envelope of the beam tip displacement over a time series will give the exponential

constant ζω0, and performing a Fast Fourier Transform (FFT) on the time series will give the

damped frequency ωd. We can solve for ζ and calculate δ accordingly for the computational

model. In the proceeding calculations we express frequencies in Hertz rather than in radians

per second, and so we use the symbol f in place of ω for all quantities involving frequencies,

with the conversion f = 2πω.

The beam is displaced and released, and the experimental time series is recorded. The

time series and the exponential fit is shown in figure 4.1. From the exponential fit, we obtain

ζω0 = 3.10± 0.05. From the Fourier transform of the experimental time series, we get that

fd = 17.6 ± 0.5 Hz. Solving for ζ and f0 gives ζ = 0.173 ± 0.005 and f0 = 17.9 ± 0.3 Hz.

Correspondingly, δ = 6.2± 0.2.

The theoretical value of f0, calculated from equation 4.1.3, is 17.81 Hz, which is within

the uncertainty bounds of the experimentally-calculated f0 (and correspondingly the theo-

retical fd = 17.54 Hz assuming ζ = 0.173). See figure 4.2 for a comparison of the FFT of

experimental data with the theoretical value of fd. The broadness of the FFT curve and the

distance between data points is due to the low amount of time available to collect data from

the free vibrations before they are damped out.

Using the calculated value of δ and the physical parameters of the experiment such as

the beam length, thickness, material etc., we can also numerically simulate equation 4.1.2

and compare the computed results to that of the experimental results. A comparison of the

experimental and computational results is shown in figure 4.1. We see that the numerical
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Figure 4.1: Experimental time series, exponential fit and numerical simulation for damped
oscillator.

Figure 4.2: Fourier transform of experimental data and theoretical value of ωd.
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simulations using the experimentally-derived value for δ and the experimental parameters

gives a good fit to the experimental data.

4.2 Free vibrations with magnets

With no forcing, A0 = 0 (hence P = 0), but Fx, Fy and C are non-zero. Thus, we need to

consider all the terms in equation 2.2.1.

The governing ODE for the beam tip position presented in equation 2.1.14 can be written

as a 2-dimensional system with v1 = vL as follows:

v̇1 = v2,

v̇2 = Fstatic(v1)− δv2.
(4.2.1)

The fixed points of this system are (Fstatic(v1), 0) = (Fstatic(vL), 0). Thus, the zeros of

Fstatic(vL) specify the fixed points of the system. The Jacobian is given by

J =

(
0 1

∂Fstatic
∂vL

−δ

)
. (4.2.2)

In general we will have δ > 0, and so trace(J) = −δ < 0, and det(J) = -∂Fstatic
∂vL

. Hence if
∂Fstatic
∂vL

< 0 at a fixed point, then det(J) > 0 and the fixed point will be a stable spiral sink

node. If ∂Fstatic
∂vL

> 0 at a fixed point, then det(J) < 0 and the fixed point will be a saddle

[14].

We first introduce the relevant theory for the Duffing oscillator in this case. We then

present an example of the computed Fstatic(vL) and the corresponding computational and

experimental cubic approximations for fixed physical experimental parameters. These are

the parameters that will be fixed experimentally when we consider non-zero forcing. We will

then examine the bifurcations of the system as certain physical parameters such as distance

between magnet centers and magnet field strengths are changed.

4.2.1 Theoretical model

The equation for the Duffing oscillator in this case is given as

v̈L = αvL − βv3L − δv̇L, (4.2.3)
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or with v1 = vL,

v̇1 = v2

v̇2 = αv1 − βv31 − δv2.
(4.2.4)

The fixed points are at (0, 0) and at (±a0, 0) =

(
±
√

α
β
, 0

)
, and the Jacobian is given as

J =

(
0 1

α− 3βv21 −δ

)
. (4.2.5)

Hence,

J |(0,0) =

(
0 1

α −δ

)
, (4.2.6)

meaning that (0,0) is a saddle point since det(J) = −α < 0 (Remember that α > 0). Also,

J |(±√α
β
,0
) =

(
0 1

−2α −δ

)
, (4.2.7)

meaning that det(J) = 2α > 0 for the fixed points at

(
±
√

α
β
, 0

)
. They will be stable spiral

sink nodes if δ > 0 (since trace(J)< 0) or centers if δ = 0 (since trace(J)= 0).

We now linearize about the fixed points ±(a0, 0) to find the natural frequency about the

buckled positions a0. We present derivations below for a0, the procedure for −a0 is similar.

We take vL = v1 = a0 + η, and substituting this into equation 4.2.3 gives

η̈ = αa0 + αη − βa30 − 3βa20η +O(η2)− δη̇. (4.2.8)

Since αa0 − βa30 = 0, if we ignore terms higher than order 2 in η we get

η̈ = −(3βa20 − α)η − δη̇. (4.2.9)

If we define ω2
1 = 3βa20 − α, we obtain

η̈ = −ω2
1η − δη̇. (4.2.10)

Thus, we see that the motion of vL = v1 around the buckled position a0 is simply that of a

damped harmonic oscillator similar to that presented in section 4.1, only that the natural
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frequency in this case is ω1 =
√

3βa20 − α =
√

3β α
β
− α =

√
2α. Since a0 =

√
α
β

and

ω1 =
√

2α, we can solve for α and β to get

α =
ω2
1

2
,

β =
ω2
1

2a20
.

(4.2.11)

a0 is easily measured experimentally, and ω1 can be obtained from a FFT of the time

series of oscillations around the buckled position a0, if we assume that the damping is small

enough that the damped frequency is close to the natural frequency, and that there is no

additional damping from the magnetic forces.

4.2.2 Equilibrium buckled positions and natural frequencies

The experimental setup is such that d = 3.93 ± 0.02 cm, where d is the distance between

the magnet centers. A plot of the magnitude-normalized magnetic field is shown in figure

4.3. We then present graphs below in figure 4.4 for Fmoment(vL), Faxial(vL), Ftransverse(vL)

and Fbeam(vL) which are computed according to the pseudo-code given in section 2.2. We

also present a graph comparing Fmagnetic(vL) with Fbeam(vL) in figure 4.5.

From Fstatic(vL) for the full model seen in figures 4.4 and 4.5, we see that the computa-

tional full model indicates that we will have a double-well potential with an unstable fixed

point (saddle) at (0,0) and two stable fixed points (spiral nodes) at (±1.10 cm,0). Taking a

cubic approximation for the computed Fstatic(vL) for small beam tip displacements, we ob-

tain α = 8.848× 103 and β = 8.113× 107 for the computational cubic approximation, shown

in figure 4.6. Thus, the computational cubic approximation predicts buckled equilibria at

vL =
√

α
β

= ±0.0104 m, and a natural frequency of f1 =
√
2α
2π

= 21.17 Hz.

Experimentally, we find that there are two stable equilibrium points, and we measure a

buckled beam tip displacement of 1.00 ± 0.02 cm about one side and 0.98 ± 0.02 cm about

the other, with respective damped natural frequencies of 24.4 ± 0.1 Hz and 24.1 ± 0.1 Hz.

The difference in the displacements and damped natural frequencies reflect the breaking of

symmetry due to factors such as imperfect magnet positioning and imperfections in beam

shape as a result of manufacturing. Nevertheless, the displacements and frequencies are close

enough that we can take the average of the two measurements so that we can compute α and

β for the experimental cubic approximation. We calculate an average experimental buckled

beam tip displacement a0 = 0.99±0.02 cm and average natural frequency about the buckled
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Figure 4.3: Computed magnetic field in experimental setup (normalized in magnitude).

Figure 4.4: Full Model: The separate terms in Fstatic with d = 3.93 cm.
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Figure 4.5: Full Model: Contributions of Fmagnetic and Fbeam to Fstatic with d = 3.93 cm.
Stable fixed points indicated as dots, unstable fixed points indicated as circles.

position of f1 = 24.3 ± 0.1 Hz. Thus, the corresponding parameters for the experimental

cubic approximation are α = 1.161× 104 and β = 1.172× 108.

We see that α and β as computed from the computational cubic approximation are

noticeably different compared to the α and β calculated from experimental measurements.

One reason for this is that there is some error in the computational cubic approximation

distribution of Fstatic from the full model, especially for smaller displacements. This is seen in

figure 4.6. Even though the computational cubic approximation gives a closer prediction of

the experimental buckled beam position, the full model gives a better match to the measured

natural frequency about the buckled positions (more similar slopes near the fixed points).

From figure 4.6, we see that the full model slightly over-estimates the equilibrium buckled

beam tip displacement. Specifically, the full model indicates that the beam tip displacement

is 1.100 ± 0.005 cm, overestimating the experimental measurements by about 10%. Fur-

thermore, numerical simulations using the full model give a damped frequency about the

equilibrium points of 24.45 ± 0.05 Hz, which within 0.6% to the experimentally measured

value. On the other hand, the computational cubic approximation to the full model predicts

a buckled beam tip displacement of 1.04 cm (closer to experimental value) and a natural

frequency of 21.17 Hz (further from experimental value). Hence, these discrepancies between

the full model, its cubic approximation and experimental results lead to the aforementioned

differences in α and β.
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Figure 4.6: Comparison of full model, computational cubic approximation (α = 8.848× 103,
β = 8.113× 107) and experimental cubic approximation (α = 1.161× 104, β = 1.172× 108)
for Fstatic.
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Figure 4.7: Level curves of an undamped Duffing Oscillator using experimental cubic pa-
rameters. The homoclinic orbit is highlighted in green, fixed points are indicated as red dots
level curves are plotted in blue.

4.2.3 Phase portraits and dynamics

As mentioned in the section 2.2, approximating Fstatic(vL) using a cubic polynomial yields

the equation for Duffing’s oscillator, which is equation 2.1.15. The dynamics of the unforced

Duffing oscillator are well-understood [14], and some results are repeated here for comparison

with the computational model and experimental results.

In the absence of damping (δ = 0), the fixed point at (0,0) is a saddle, and the fixed

points at

(
±
√

β
α
, 0

)
are centers (see section 4.2.1). The equation for the undamped Duffing

Oscillator can be integrated to show that it is a Hamiltonian system with total energy

Q(t) = 1
2

(
v̇L

2 − αv2L + 1
2
βv4L

)
= constant. The energy Q(t) describes a double-well potential

over vL and v̇L, and the corresponding level curves are shown in figure 4.7. The trajectory of

any initial condition starting on the level curve stays on the level curve. Thus, an orbit along

a level curve represents an orbit of the system for a given energy, and all orbits are periodic

except for the two homoclinic orbits to the saddle at (0,0), which is discussed below.

An important orbit to notice is a homoclinic orbit which joins the saddle point to itself.

It corresponds to the level curve with energy 0 in figure 4.7, highlighted in green. Formally, a

trajectory on such an orbit approaches the saddle point as t→ ±∞. Thus, such a homoclinic

orbit lies in the intersection of the stable and unstable manifolds of an equilibrium [2], and

these manifolds will be important in explaining chaotic behaviour of the system when periodic

30



Figure 4.8: Manual displacement of beam tip to investigate fixed points of system.

forcing is introduced. For now, it suffices to notice that the homoclinic orbit of the saddle

point separates the phase plane into 3 different regimes with two possible behaviors : There

are small periodic oscillations that go back and forth about the two stable fixed points

(regimes 1 and 2 with negative energy in figure 4.7), and there are large periodic oscillations

that go back and forth encircling both stable fixed points (regime 3 with positive energy in

figure 4.7).

We now consider non-zero damping. The fixed point at (0,0) is still a saddle, but the two

fixed points at

(
±
√

β
α
, 0

)
are now stable spiral nodes, as analyzed in section 4.2.1. We see

from the full model in this case that there are also three fixed points, a saddle at (0,0) and

two stable nodes at (±v∗L, 0), where Fstatic(v
∗
L) = 0. The two stable fixed points are observed

experimentally as seen from measurements for the equilibrium buckled beam tip positions.

The unstable saddle point can be observed experimentally where the beam tip tends

towards one of the equilibrium points as it is pushed away from that point, but then suddenly

snaps towards the other equilibrium point as it is pushed past the unstable equilibrium. See

figure 4.8 for observations of this phenomenon.

Non-zero damping also implies that there is energy dissipation in the system. It can

be shown that dQ(t)
dt

= −δv̇L2 ≤ 0 [14], and thus all trajectories are such that the energy

decreases until vL converges to one of the fixed points of the system where v̇L = 0 . This

can be illustrated by considering the basin of attraction for the fixed points of the system,

shown in figure 4.9 for the experimental cubic approximation.
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Figure 4.9: Experimental cubic approximation: basin of attraction for fixed points (± 0.99
cm, 0) shown in white and green respectively. Stable manifold of saddle shown in blue,
unstable manifold of saddle shown in red.

Figure 4.10: Full model: Basin of attraction for fixed points (± 1.1 cm, 0) shown in white
and green respectively. Stable manifold of saddle shown in blue, unstable manifold of saddle
shown in red.
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We see that with damping, the homoclinic orbit is ‘broken’ and the stable and unstable

manifolds of the saddle point are separated. The unstable manifolds of the saddle point

spiral into the stable fixed points, whereas the stable manifolds of the saddle point extend

out to the whole phase plane, separating the basins of attraction of the two stable fixed

points. Thus, the stable and unstable manifolds of the saddle point determine the global

behaviour of the system. The basin of attraction for the saddle point is a curve (the stable

manifold of the saddle), whereas the basin of attraction of the two stable fixed points are

areas separated by that curve.

We also observe such behaviour in the full computational model. The orbits observed

in numerical simulations involving the full model are similar to that those of the Duffing

oscillator, with similar shapes for the basins of attraction, as seen in figure 4.10.

An important consideration in thinking about this similarity is that both the full model

and the cubic approximation possess a saddle in between two stable spirals, and that these

are the only fixed points for both systems. Thus, the linearization of Fstatic(vL) near these

fixed points for both the full model and the cubic approximation are necessarily isomorphic

to each other [2]. A related idea is that the general shape of Fstatic(vL) for the full model is

similar to that of the cubic approximation over vL for moderate displacements, which can

be seen in figure 4.6. For larger displacements, the cubic approximation increases in mag-

nitude faster than the full model (cubic vs linear). The experimental cubic approximation

is replotted in figure 4.11 over a larger range of vL. However, this is not important since

energy dissipation due to damping means that the all trajectories still have to go to fixed

points of the system as t → ∞ regardless whether Fstatic(vL) is modelled by the full model

or by the cubic approximation, and the fixed points of the system are well-approximated by

the cubic, meaning we expect the behaviour of the orbits for the full model to be similar to

that of the Duffing oscillator, at least for moderate displacements.

The structure of the basin of attraction can also be observed experimentally. If we

displace the beam tip outwards slightly from one of the fixed points and release it, the

trajectory is such that the beam tip should return to the same fixed point. However, for

larger displacements, the trajectory is such that the beam tip will end up at the other fixed

point, and for even larger displacements the beam tip will end up at the fixed point on the

same side and so on. This is seen in figures 4.12 and 4.13, where the trajectories of the orbits

follow the structure of the basin of attraction presented in figures 4.9 and 4.10. We note that

the uncertainty in the digital readings caused by electrical noise (as mentioned in section 3.2)

results in ‘noisy’ plots of the orbits on the phase plane as taken from experimental data. We

generally see a large-scale component of the noise when the beam is in motion, as well as a

small-scale component of the noise when the beam is at rest. Although the orbit trajectories
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Figure 4.11: Comparison between experimental cubic approximation with full model, with
qualitative divergence between the two for ||vL|| > 0.02.
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Figure 4.12: Orbits for displacement of beam tip near (0.99,0) along the basin of attraction.
Initial points are indicated as filled circles.
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Figure 4.13: Orbits for displacement of beam tip near (-0.99,0) along the basin of attraction,
and magnification of a region near (-0.99,0). Initial points are indicated as filled circles.
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in figures 4.12 and 4.13 appear to cross, this is an artefact of the large-scale noise from the

readings. The small-scale noise is clearly seen in the magnified region in figure 4.13, where

we still have some noise in the position and velocity readings even when the beam is at an

equilibrium point and is no longer moving. Nevertheless, the experimental data is sufficient

to show the general structure of the basins of attraction of both stable fixed points.

4.3 Bifurcations of equilibria

Approximating Fstatic(vL) by a cubic approximation is valid for moderate beam tip displace-

ments, but it is also important that Fstatic(vL) is such that there are three fixed points (as

in the case described above) and that it is adequately modelled by a cubic. As detailed in

Holmes [1], depending on the physical system parameters it is also possible for the system

to have one or five fixed points as well. In these cases the cubic approximation does not

model Fstatic(vL) accurately. We now investigate such bifurcations as physical parameters of

the setup are changed, and show how Fstatic(vL) from the full model changes accordingly.

4.3.1 Varying distance between magnet centers while maintaining

symmetry

We first present the bifurcation diagram as d increases in figure 4.14. All other physical

parameters are the same as in section 3.1 from chapter 3. The bifurcation diagram is created

by computing the fixed points and their stabilities from Fstatic(vL) of the full model. The

shape of the bifurcation diagram is similar to that presented in figure 6 in [1].

In general, there are two main forces that determine the fixed points of the system:

The magnetic force from the magnets and the elastic force from the beam. This is seen in

equation 2.1.8. The proceeding discussion will reference the regions indicated in figure 4.14.

In region 1, for very small d, the magnets are very close to each other and are approx-

imately right below the beam. We see that there is only one stable fixed point at vL = 0.

This is because the direction of the magnetic field is very similar to that of a single magnet

underneath the beam, as seen in figure 4.15. Figure 4.16 shows a plot of Fstatic(vL) for d =

2.74 cm. No experimental data in this section was available due to the strong repulsive force

between the magnets making it hard to bring them close to each other.

In region 2, we see that a supercritical pitchfork bifurcation occurs and two new stable

fixed points emerge while the stable fixed point at vL = 0 becomes unstable. The two

magnets are far enough apart now that the magnetic field is different from that described in
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Figure 4.14: Bifurcation diagram as distance between magnets is increased. Solid curves are
computed from the full model, circles are experimental data points with standard error bars.
Red indicates unstable fixed points, blue indicates stable fixed points.

Figure 4.15: Magnet placement and magnetic field for d = 2.74 cm.
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Figure 4.16: Full model: Contributions of Fmagnetic and Fbeam to Fstatic for d = 2.74 cm.
Stable fixed points indicated as dots.

the previous paragraph, but they are close enough to the beam tip such that the magnetic

force on the beam tip is larger than the elastic restoring force, causing the beam tip to be

attracted to either one of the magnets. Each magnet has its own domain of attraction, and

the beam tip will be attracted towards the magnet that is closer to it. Our experimental

setup (d = 3.93 cm) lies in this domain of the bifurcation diagram, and the magnetic field

and corresponding Fstatic have been presented in figures 4.3 and 4.5.

In region 3, we see that a subcritical pitchfork bifurcation occurs, and the unstable fixed

point at vL = 0 becomes stable again while two new unstable fixed points emerge. The

magnets are now far enough from the center vertical beam position that for small beam

tip displacements from the center, the elastic restoring force is greater than the attracting

force from the magnets. Thus for small beam tip displacements the beam tip will not be

attracted towards the magnets and instead oscillate back towards the center. However, for

large enough displacements, the beam tip is attracted towards the closer magnet as magnetic

forces dominate again. The corresponding graph for Fstatic is presented in figure 4.17. We

see from figure 4.17 that the system is close to a saddle-node bifurcation.

In region 4, we see that two saddle-node bifurcations occur and the pair of stable and

unstable fixed points that were generated by the two pitchfork bifurcations annihilate. Phys-

ically, the magnets are now so far away from the center that the magnetic field is too weak,

and the elastic restoring force of the beam dominates for all beam tip displacements. Hence,
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Figure 4.17: Full model: Contributions of Fmagnetic and Fbeam to Fstatic for d = 4.74 cm.
Stable fixed points indicated as dots, unstable fixed points indicated as circles.

the only fixed point is the stable fixed point at vL = 0. The corresponding graph for Fstatic

is presented in figure 4.18.

Pitchfork and saddle-node bifurcations are also observed for certain parameters that pre-

serve the symmetry of the setup. The bifurcation diagram is shown in figure 4.19 for increas-

ing Young’s Modulus of the beam material. Increasing the Young’s Modulus corresponds to

increasing the stiffness of the beam material (we assume that no plastic deformation occurs

in the beam). We see that a subcritical pitchfork bifurcation occurs follow by saddle-node

bifurcations as E is increased.

4.3.2 Symmetry breaking via changing beam tip offset

Up until now we have assumed a symmetry of the system with respect to the vertical beam

tip position. We now consider a situation where the symmetry of the setup is broken due

to the magnets not being placed symmetrically about the vertical beam tip position. The

result of this is that the vertical equilibrium beam tip position (without magnets) is offset

from the center of the line between the magnet centers (henceforth referred to as the center

point). An example is shown in figure 4.20 for an offset of 0.01 cm and d = 3.93 cm.

The bifurcation diagram is shown in figure 4.21 as this offset is varied with d = constant =

3.93 cm. Note that the fixed point positions are measured relative to the vertical equilibrium
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Figure 4.18: Full model: Contributions of Fmagnetic and Fbeam to Fstatic for d = 5.14 cm.
Stable fixed points indicated as dots.

Figure 4.19: Bifurcation diagram for increasing Young’s Modulus, d = 3.93 cm. Solid curves
are computed from the full model. Red indicates unstable fixed points, blue indicates stable
fixed points.
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Figure 4.20: Setup with beam offset of 0.01 cm and d = 3.93 cm.

beam tip position, and not the center point between the magnets.

We see that for small offsets (region 1 in figure 4.21), there is still a saddle in between

two stable fixed points, but as the offset is increased the saddle point moves closer to one of

the stable fixed points corresponding to the magnet that is further away from the vertical

beam tip position. This makes sense physically since the magnet that is closer to the beam

exerts a stronger attracting force on the beam compared to the magnet that is further away

from the beam, and hence we have to displace the beam further to get the beam to snap

toward the further magnet. Fstatic is shown in figure 4.22 for an offset of 0.1 cm with d =

3.93 cm.

For larger offsets (region 2 in figure 4.21) a saddle-node bifurcation occurs at around an

offset magnitude of 2.71 mm. Only one stable fixed point remains. This corresponds to the

having one of the magnets being too far away from the beam, and hence the elastic restoring

force is larger than the magnetic force exerted by that magnet for all beam tip displacements.

Fstatic is shown in figure 4.23 for an offset = 0.5 cm with d = 3.93 cm.

We can examine the full behaviour of the system by considering even larger offsets (see

figure 4.24). In addition to the saddle-node bifurcations at offsets of ± 2.71 mm that have

been seen in figure 4.21, we have additional saddle-node bifurcations at offsets of ± 4.4 cm

and ± 4.6 cm. These additional saddle-node bifurcation correspond to a weakening of the

magnetic field around the beam due to the distance of the beam from both magnets.
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Figure 4.21: Bifurcation diagram for offset magnitudes of up to 3.3 mm, with d = 3.93 cm.

Figure 4.22: Full model: Contributions of Fmagnetic and Fbeam to Fstatic for an offset of 0.1
cm with d = 3.93 cm. Stable fixed points are indicated as dots, unstable fixed points are
indicated as circles.
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Figure 4.23: Full model: Contributions of Fmagnetic and Fbeam to Fstatic for an offset of 0.5
cm with d = 3.93 cm. Stable fixed points are indicated as dots

Figure 4.24: Bifurcation diagram for offset magnitudes of up to 6 cm wit d = 3.93 cm. Solid
curves are computed from the full model. Red indicates unstable fixed points, blue indicates
stable fixed points. Saddle-node bifurcations are highlighted in circles.
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Figure 4.25: Bifurcation Diagram as d is increased with a constant offset of 2.5 mm. Solid
curves are computed from the full model. Red indicates unstable fixed points, blue indicates
stable fixed points.

4.3.3 System stability in two-parameter space

In subsection 4.3.1, the parameter that was varied (distance between magnet centers) was

one that preserved the symmetry of the setup, whereas in subsection 4.3.2, the variation

of the parameter (beam tip offset) resulting in a breaking of symmetry. In order to gain a

larger view of the bifurcations, we can consider a two-dimensional parameter space. Thus,

the fixed points over this parameter space form a surface. For an example of such a surface,

see page 72 of [14]. To visualize this whole surface requires visualization in three dimensions

- two dimensions for the parameters and one for the fixed point positions. However, we can

take slices of this surface via bifurcation diagrams by holding one parameter constant. Two

such bifurcation diagrams have already been presented in figures 4.14, 4.21 and 4.24. We

can also visualize the structure of this surface by constructing a bifurcation set for the two

parameters. In the following figures, we consider a parameter space with d as one parameter

and the offset as another parameter.

We first consider the case where there is a non-zero offset which breaks the symmetry,

and vary d. This is shown in figure 4.25. The shape of the bifurcation diagram is similar to

that of an imperfect pitchfork [14].

We next consider the case where there are 5 fixed points for a zero offset, and vary the

offset. This is shown in figure 4.26.
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Figure 4.26: Bifurcation Diagram as offset magnitude is increased for a constant d of 4.5 cm.
Solid curves are computed from the full model. Red indicates unstable fixed points, blue
indicates stable fixed points.

We can construct a bifurcation set of the system for the two parameters, shown in figure

4.27. The same bifurcation set with corresponding ‘slices’ of bifurcation diagrams is shown

in figure 4.28. Slice numbers are shown in circles next to corresponding slice lines. Slice 1

corresponds to figure 4.14, slice 2 corresponds to figure 4.25, slice 3 corresponds to figure

4.21, and slice 4 corresponds to figure 4.26.

We can also plot the fixed points over the two parameters in 3-dimensional space, given

in figure 4.29. The resulting points that lie on the stability surface actually forms a cusp

catastrophe surface, of which research has been done on [23]. However, this surface is slightly

more complicated due to there being two pitchfork bifurcations instead of just one, resulting

in three stable surfaces (surfaces formed by the set of stable fixed points) - An ‘upper’ one,

a ‘middle’ one and a ‘lower’ one. These stable surfaces are connected by unstable surfaces,

giving the impression of the stable surfaces being ‘folded’ over the other stable surfaces,

with the unstable surfaces being the connecting ‘fold’. The number of ‘folds’ that one can

see when projecting the surface onto the two-parameter space corresponds to the number of

fixed points in the bifurcation set shown in figure 4.27.

A physical example of a catastrophe is to consider the case of our system being such

that the beam offset is zero, and the distance between magnet centers is 3.93 cm, so that

we have an unstable fixed point (saddle) between two symmetric stable fixed points. Let
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Figure 4.27: Bifurcation set for parameters d and offset. Red regions denote 1 fixed point,
green regions denote 3 fixed points, blue regions denote 5 fixed points. Saddle node bifu-
cations occur on boundaries between regions, except at cusps on the line offset = 0, where
pitchfork bifucations occur.

Figure 4.28: Same Bifurcation set as for parameters d and offset, shown with ‘slices’ corre-
sponding to previously-presented bifurcation diagrams.
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Figure 4.29: The surface of equilibria as computed using the full model over the two-
parameter bifurcation set : two different views, with the relative positions of stable surfaces
indicated. Blue denotes stable equilibria, red denotes unstable equilibria.
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Figure 4.30: Time series as magnet 1 is displaced away from magnet 2 from an initial d =
3.93 cm to d = 4.74 cm, illustrating a catastrophe as the stable fixed point ‘jumps’ from one
stable surface to another.

the beam tip be attracted towards one of the magnets (call this magnet 1, and the other

magnet, magnet 2), and consider what happens as we move magnet 1 away from magnet 2,

keeping all other variables constant. This is equivalent to increasing d and increasing the

offset magnitude as well. Initially the beam tip will be displaced further outward as magnet

1 is moved further outward, moving along with the stable equilibrium point associated with

magnet 1. However, there is a certain point where the elastic force on the beam is greater

than the magnetic force exerted on the beam, and the stable equilibrium point associated

with magnet 1 disappears due to the saddle-node type bifurcations seen in figure 4.21, and

the beam tip will then swing towards magnet 2, demonstrating the catastrophe. See figure

4.30 for experimental measurements of this. In terms of the 3-D equilibria surface in figure

4.29, this corresponds to ‘jumping off’ from the edge of one of the stable surfaces to another.

Hysteresis can also be seen by considering what happens if we start to move magnet 1 back

towards magnet 2. We will need to move magnet 1 closer to magnet 2 compared to the

initial conditions of d = 1.4 cm to get the beam tip to swing back towards magnet 1.

We see how the full model is very useful in studying the bifurcations and catastrophes

that happen in the system as the physical parameters are varied, something that would not

have been possible if we had just used a cubic approximation for Fstatic. We now turn our
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attention towards the case where the system is periodically forced.
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Chapter 5

Results and Discussion II

In this chapter we focus on the case where we have magnetic fields as well as forcing from the

shaker. We first provide an explanation of the Poincaré map, which allows us to analyze the

3-D orbits of the system in terms of a map on a 2-D surface. We then consider the system as

small-amplitude forcing is introduced, providing results from both our experimental setup as

well as from numerical simulations of the full model. Next, we investigate the system when

the forcing is increased such that “strange attractor” motions start to occur. We provide

some background theory behind these motions as well as experimental and numerical results

that demonstrate these “strange” motions. We conclude the chapter by presenting the

bifurcation diagram as a physical parameter (magnet field strengths) is increased in order

to demonstrate to usefulness of the full model.

5.1 Poincaré map

If we now include periodic forcing, we now need to consider all of the terms in equation 2.1.14,

With P 6= 0, the ODE is now non-autonomous. (Remember that P = ω2A0φ(L)
∫ L
0
φ ds as

defined in equation 2.1.13). However, we can rewrite equation 2.1.14 as an autonomous

3-dimensional system as follows, with v1 = vL:

v̇1 = v2,

v̇2 = Fstatic − δv2 + Pcos(ωτ),

τ̇ = 1.

(5.1.1)

Notice that the vector field presented in equations 5.1.1 is periodic in τ (and therefore

periodic in t) with period 2π
ω

. Thus, the solutions of the system actually reside in the 3-D
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space R2× S1, where S1 is a circle of length T = 2π
ω

, T being the period of the forcing. Note

that this does not necessarily mean that the orbits of the system are also periodic.

Now consider the 2-D surface consisting of the vL-v̇L planar cross-section Σ at τ = 0,

formally defined as Σ = {(vL, v̇L, τ) ∈ R2 × S1|τ = 0}. Hence, Σ ∈ R2. Since τ̇ = 1, this

surface is always transversal to the flow of the system. Hence, we can consider the Poincaré

map G defined on the surface Σ for the system in equations 5.1.1.

The 2-D Poincaré map G can be defined in our case as follows: Let p be a point on Σ. p

generates a 3-D trajectory that evolves in time under the flow specified by equations 5.1.1.

Since the τ component of the flow is defined over S1, this trajectory must eventually intersect

Σ again at some point q after a duration of T = 2π
ω

. The Poincaré map G over Σ is defined

such that G(p) = q for every point p on Σ. Thus, the Poincaré map maps points on Σ to

points on Σ, and (in our case) is a non-linear map with stable and unstable manifolds [2]. By

analysing the orbit structure of the 2-D Poincaré map, we can correspondingly gain insight

into the orbit structure of the 3-D system in equations 5.1.1 without having to visualize

the flow and orbits in 3 dimensions. For a Poincaré map G, let Gn(p) denote n iterations

of G on a point p. For an arbitrary point p0 on Σ, if there is a cycle of k distinct points

pj = Gj(p0), j = 0, 1, ..., k − 1 and Gk(p0) = p0, then there is a periodic orbit of period k for

the map defined by G [2].

If we approximate Fstatic using a cubic, we obtain the equation for the forced damped

Duffing oscillator. The dynamics of the corresponding Poincaré map have been thoroughly

analyzed [3]. Some of the relevant theory is repeated here for comparison with results from

the full model as well with experimental results. In the following discussion, it is assumed

that we are in the double-well potential regime where Fstatic(v1) is well-approximated by

a cubic, unless explicitly specified. The experimental parameters are the same as given in

section 3.1 from chapter 3.

For the numerical simulations involving the full model in this section, we use a higher

grid density and increased ODE solver accuracy. We use 5000 nodes along φ and 20000

nodes along vL corresponding to a grid size of 2.6× 10−6 . Matlab’s ODE113 is used as the

ODE solver, which is has more stringent error tolerances than ODE45. We specify a relative

tolerance of 10−10 and an absolute tolerance of 10−8 for the ODE solver.

All Poincaré maps are produced from processing data of the position and velocity time

series, both experimentally and numerically. In terms of numerical simulations, a particular

forcing frequency f is specified, which will correspond to a period of T = 1/f that is used

to sample points for the Poincaré maps from the position and velocity time series, which are

produced from numerical simulations.

Poincaré maps from experimental data are produced by noting the frequency f of the
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driving signal as displayed digitally by the signal generator, and then calculating a period

T = 1/f that is used to sample points for the Poincaré maps via linear interpolation of

the experimental data. The circuit used to collect and process the position and velocity

measurements has already been discussed in section 3.2 of chapter 3. An important detail

is that the sampling of points for the Poincaré map from experimental data is not directly

synchronized with the driving signal of the signal generator. Rather, we only measure the

position and velocity of the beam tip, and then from post-processing of the resulting time

series we generate a Poincaré map based on the driving frequency as displayed by the signal

generator. Thus, one of the assumptions is that the frequency as displayed by the signal

generator is close to the actual output signal to the shaker. If the signal frequency is different

than the output frequency, then the error from the differences in frequency will result in a

drift of a fixed point across the projected orbit when generating the Poincaré map. Even

though this method is not as accurate as if we had synchronized the driving signal with the

sampling of the position and velocity signals from the ADC, the resulting Poincaré maps are

sufficiently clear enough to display the relevant fixed points and structures of the Poincaré

map.

5.2 Forced oscillations : Small forcing amplitudes

5.2.1 Theory

For small forcing, the topology of the Poincaré map is similar to the case of no forcing.

The saddle and stable spiral sink nodes in the 2-D phase plane analysis in section 2.3.2 for

the unforced case now become saddle-type and sink-type period-1 orbits in the 3-D phase

space. If A0 is small, then P is small and hence there are two attracting and one repelling

closed orbits for the system described by equations 5.1.1 as the previously fixed points of the

unforced case“oscillate” as τ evolves. Thus, the Poincaré map has a saddle and two stable

sinks corresponding to the one repelling and two attracting closed orbits, with similarly-

shaped stable and unstable manifolds of the saddle at (0,0) as that of the unforced case.

As the forcing amplitude increases, so do the amplitudes of the orbits (but maintaining low

forcing amplitudes).

An experimental observation is that for a constant low-amplitude forcing, there can exist

both small-amplitude periodic oscillations of the beam tip about both static equilibrium

points as well as large-amplitude periodic oscillations encircling all three equilibrium points.

In general such coexistence of periodic orbits can occur (See [2], page 87.)
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Figure 5.1: Projected orbits (blue) and corresponding Poincaré Map points (red) from ex-
perimental data, with A0 = 2.9 mm and f = 11.8 Hz. Correspondingly, P = 24.96.

5.2.2 Results from experiment and numerical simulations

We present the Poincaré maps from experimental data, as well as from numerical simulations

of the full model in figures 5.1 and 5.2 respectively for A0 = 2.90 ± 0.05 mm and f =

11.38± 0.05 Hz.. The blue points correspond to the relevant orbit projected onto the vL-v̇L

plane, and red points are points from the Poincaré map taken from the orbit.

We see that the structure of the orbits from experimental data are similar to that those

computed from the full model. However, the projected orbits and Poincaré map points for

the experimental data are much more “fuzzier” and spread out compared to the numerical

simulations. A factor in this is the errors introduced by the electronic components used to

collect data such as the strain gauge, amplifier and analog-to-digital converter, as well as

electronic noise which is amplified by the amplifier. However, we also notice that the exper-

imental Poincaré map points are more spread out compared to the numerical simulations

(which are computed with much higher accuracy than can be afforded with experiment).

This is especially noticeable for the large-amplitude orbit. A reason for this is due to the

uncertainty and possible drift in the forcing frequency from the signal generator. Thus, if

our sampling frequency for the Poincaré map is slightly different from that of the forcing

frequency (possibly due to the lack of synchronization as explained in section 5.1), this will

lead to a drift in the Poincaré map points over the projected orbit. Thus, there is a limit to

the time-span over which the Poincaré map can be taken from the experimental data.
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Figure 5.2: Projected orbits (blue) and corresponding Poincaré Map points (red) from nu-
merical simulations of full model, with A0 = 2.9 mm and f = 11.8 Hz. Correspondingly, P
= 24.96.

For the larger-amplitude orbit, the Poincaré map is taken over a time series of 20 seconds,

or 236 forcing periods. For the smaller-amplitude orbits, the Poincaré map is taken over a

time series of 180 seconds, or 2124 forcing periods. We notice that the larger-amplitude orbit

shows more error compared to the smaller-amplitude orbits as the Poincaré map points are

more spread out, even though the Poincaré map for the larger-amplitude orbit is taken

over a shorter time frame. A possible reason for this is the nature of the large-amplitude

oscillations themselves, as there is a higher relative uncertainty in position and velocity over

the same time step for large-amplitude oscillations compared to small-amplitude oscillations

at the same frequency, assuming a constant sampling rate for both. Thus, there will be an

increased error associated with the linear interpolation used to generate the Poincaré map

for the large-amplitude oscillations, on top of the error due to differences between sampling

and forcing frequencies.

Another difference is that the fixed points of the experimental Poincaré map are at dif-

ferent positions compared to the numerically-simulated Poincaré map. This is because the

cross-section Σ for the experimental data is not taken exactly at τ = 0, as it is difficult to

synchronize the beginning of data collection with the exact time the orbit crosses Σ at τ = 0.

This is another error that arises from not being able to synchronize the data collection with

the driving signal from the signal generator, and also from the time difference between ini-
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tializing and starting data acquisition. The result is that the fixed points of the experimental

Poincaré map will lie at different locations along the projected orbit compared to the fixed

points of the numerically-computed Poincaré map. However, this is not a significant error as

our goal is to show the agreement between experimental and computational data in terms

of possible orbits that can be achieved and their corresponding fixed points on the Poincaré

map, which differ by just a phase.

5.3 Forced oscillations : Medium and large forcing am-

plitudes

5.3.1 Theory

As the forcing of the Duffing oscillator is increased, it has been shown using the methods

of Mel’nikov [24] that the stable and unstable manifolds of the saddle point (0,0) of the

Poincaré map wind back and forth and grow closer to each other until they eventually touch

and then intersect transversally. Specifically, the critical forcing parameter for which they

touch is given as1[3]:

Pc =
4

3

[
δα

3
2

πω
√

2β

]
sinh

(
πω

2
√
α

)
. (5.3.1)

The transverse intersection of the stable and unstable manifolds that occur for P > Pc

mean that there will be homoclinic points on the Poincaré map giving rise to homoclinic or-

bits. Moreover, since the manifolds are invariant under the Poincaré map (invariant meaning

that orbits on the manifold stay on the manifold), the existence of one intersection implies

the intersection of infinitely many intersections. The result is an extremely complex invariant

set Ωh, a “Smale horseshoe”, in the neighbourhood of the stable and unstable manifolds. Ωh

possesses orbits of all periods in addition to dense non-periodic orbits.

This complex structure induces homoclinic motions, which causes the orbit to ‘wander’

erratically before approaching an attracting set. For P slight larger than Pc, the two stable

sinks still exist and almost all orbits approach either one of the sinks as t → ±∞. As the

forcing is increased, the fixed points (sinks) become saddle points and they each throw off

a pair of sinks, and this bifurcation occurs for each pair of sinks as the forcing is increased

further, giving rise to orbits of period 2, 4, 8, 16, . . .. After a certain point there are so many

bifurcations that periodic points on the Poincaré map can no longer be clearly distinguished,

1The equation for Pc given here is different compared to the equation given in [3], in that α and β are
switched. This is due to the way α and β are defined differently in [3]
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and the iterates of the Poincaré map move irregularly in a sense that they are not attracted

to a periodic point. This suggests the presence of a “strange attractor”, which we shall

refer to as S, that possesses a fractal structure, with an infinite number of saddles associated

with the original sinks and a countable infinity of periodic points due to the homoclinic

intersections of the stable and unstable manifolds.

Holmes [3] also observed stable attracting motions of Period 5 instead of strange motions

for certain parameters. Finally, for much larger forcing parameters a sink and a saddle

appear ‘outside’ of the homoclinic points and S, meaning that as t → ±∞ the orbits will

once again be periodic as they are attracted towards the sink. (See figure 2.2.5 in [2])

5.3.2 Results from experiment

We present the results of experimental data for f = 10.43 Hz. The focus will be to investigate

the ”strange attractor” motions that were described in the previous paragraph.

Using the experimentally-derived values of α and β given in figure 4.6 where α = 1.161×
104 and β = 1.172×108, we use equation 5.3.1 to calculate that Pc = 3.6232, or equivalently

(A0)c = 0.54 mm. Remember that this is the forcing amplitude at which homoclinic points

theoretically start to appear, but is lower than the forcing amplitude at which sustained

strange attractor motions occur. Since the electromagnetic shaker has a maximum forcing

amplitude of 6 mm, we are confident that we can observe at least transient chaotic motions

before the orbit is attracted to one of the sinks, or perhaps even strange attractor motions.

For a lower forcing amplitude of A0 = 2.98± 0.05 mm (or P = 20.04), the experimental

orbits are similar those presented in figure 5.1, where we have periodic small-amplitude oscil-

lations around one of the equilibrium points, depending on the initial conditions. However,

large-amplitude oscillations between both equilibrium points were not stable and eventually

decayed to small-amplitude oscillations.

For a higher forcing amplitude of 3.95± 0.05 mm (or P = 26.57), we observe occurrences

of transient chaotic motions as the beam displays irregular motions for 25-35 seconds when

perturbed before settling into sustained periodic motion, similar to the predicted behaviour

from Duffing oscillator theory. We do not observe transitions from periodic motion into

irregular motions. The transition from chaotic to periodic motion is shown in figure 5.3

and the Poincaré map is shown in figure 5.4. From the Poincaré map in figure 5.4, we see

that the orbit wanders along the structure of the strange attractor before being eventually

attracted to a sink of Period 2. (Contrast the ‘outline’ of the initial transient chaotic orbit

to the structure of the Strange Attractor presented later in figure 5.6)

Note that the points on the Poincaré map are coloured such that points that are sampled
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earlier in the time series are ‘colder’ colours, and points sampled later are ‘hotter’ colours.

The order from earliest to latest is dark blue→ light blue→ light green→ yellow→ orange

→ red → dark red.

If we now increase the forcing amplitude to 4.31 ± 0.05 mm (or P = 28.99), we observe

irregular motions which were sustained for over 4 hours, or roughly 1.35 × 105 forcing pe-

riods. An example of these irregular beam tip motions is presented in figure 5.5, and the

corresponding Poincaré map is shown in figure 5.6. The Poincaré map is taken over the first

2 hours of the experimental data (and not the whole 4 hours) to reduce Poincaré map errors

due the forcing frequency drift as described in the previous section.

The structure of the strange attractor in figure 5.6 is similar to those investigated by

Holmes [1],[3]. We see that there are certain areas on the Poincaré map that display obvious

colour gradients. Due to the finite width of points, later time points will be superimposed

upon earlier time points as the Poincaré map rendered, and thus it is possible for ‘hotter’-

coloured points to obscure ’cooler’-coloured points, but not vice-versa. See figure 5.11 below

for an example of this in a Poincaré map computed using numerical simulations of the full

model. Thus, the existence of colour gradients indicates that there is some frequency drift

in the forcing frequency over time, resulting in a slight shift of the strange attractor due

to the Poincaré map sampling frequency being slightly different than that of the forcing

frequency. Nevertheless, we see that this slight shift does not significantly alter the structure

of the strange attractor. Unfortunately, experimental error constraints combined with this

frequency drift limit the resolution at which we can view the strange attractor, and hence

magnification of figure 5.6 does not yield any further appreciable structure.

We also compute the natural logarithm of the FFT power spectra from the time series.

The power spectra peaks at f = 10.46 Hz, which is close to the forcing frequency of 10.43

Hz. Furthermore, we find that the power spectra decays exponentially with f, as evidenced

from a linear fit of the log power spectra with frequency, presented in figure 5.7. This is

in agreement with the theory presented by Brunsden and Holmes [17] for power spectra of

strange attractors near homoclinic orbits.

In conclusion, we find that the experimental data is consistent with Duffing oscillator

theory as we increase the forcing amplitude. We next present results using the numerical

simulations of the computational full model.

5.3.3 Results from numerical simulations

We present a bifurcation diagram using simulations of the full computational model. A0 is

varied from 0.1 cm to 1.7 cm (or equivalently P is varied from 6.73 to 114.3) for a fixed
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Figure 5.3: Experimental (Sample) Time Series : Transition from chaotic to periodic motion
(period 2) after 31 seconds, with A0 = 3.95 mm and f = 10.43 Hz, correspondingly P =
26.57. Magnified region shows period-2 orbit.
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Figure 5.4: Experimental Poincaré map from experimental data with A0 = 3.95 mm and
f = 10.43 Hz : Transition from chaotic to period-2 motion. “Colder” colors indicate points
taken earlier in the time series,“hotter” colors indicate points that are taken later.
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Figure 5.5: Experimental (Sample) Time Series : Irregular Motions for A0 = 3.95 mm and
f = 10.43 Hz, correspondingly P = 28.99. Magnified region shows motions over a smaller
time scale.
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Figure 5.6: Experimental Poincaré map from experimental data with A0 = 3.95 mm and
f = 10.43 Hz taken over 2 hours.“Colder” colors indicate points taken earlier in the time
series,“hotter” colors indicate points that are taken later. Presence of color gradients indi-
cates slight shift in forcing frequency, resulting in a slight shift in the structure of the strange
attractor.

Figure 5.7: Logarithm of power spectra for time series corresponding to strange attractor
motions. Linear fit is taken over 0 ≤ f ≤ 80 Hz.
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Figure 5.8: Poincaré Map components as A0 is increased for the full computational model.

forcing frequency of 10.43 Hz, and the Poincaré map is computed from the resulting time

series simulation for each A0. Here d = 3.93 cm with zero offset. The initial conditions

for each case are vL(0) = 1 cm , v̇L(0) = 0. Each case is simulated for 100 seconds, but

the Poincaré map is taken over the last 20 seconds of the simulation (207 forcing periods)

to exclude transients. For computational efficiency we use 5000 nodes over vL instead of

20000 when computing the bifurcation diagram. We plot the vL and v̇L components of the

Poincaré map as A0 is varied in figure 5.8. The various regions indicated in figure 5.8 will

be referenced in the following discussion.

We feel that it is important to point out the limitations associated with the methods

used to compute the bifurcation diagram in figure 5.8. Unlike the bifurcation diagrams

presented in section 4.3, chapter 4 where all fixed points of the system and their corresponding

stabilities are determined by the zeros and their corresponding slopes of the one-dimensional

function Fstatic (which is easily computed), finding the fixed points of the Poincaré map

involves computing the Poincaré map for points over the two-dimensional plane Σ, and

so the associated computational complexity is higher due to the higher dimensionality of

the problem. Furthermore, the full model is not amenable to analytic methods due to its

numerical definition, and thus numerical detection of the fixed points of the Poincaré map

as well as numerical estimation of their corresponding eigenvalues will be required.

In place of calculating the Poincaré map for a grid of points over Σ and having to deal
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with numerical methods to detect the fixed points and their stabilities, we choose an alternate

method of picking an initial point on Σ (we choose vL(0) = 1 cm, v̇L(0) = 0), numerically

simulating the system using the full model over a long period of time and recording the

intersections of the resulting trajectory with Σ. This will give us a 2-D orbit of points given

by the Poincaré Map over Σ. Although this method is more straightforward, there are several

limitations to it, since

1. we will not be able to locate any fixed points of the Poincaré Map that have unstable

components (eigenvectors with eigenvalues having modulus > 1) such as saddle points,

since the orbits will either settle into a sink of period k (k some positive integer) or

end up moving around on a strange attractor structure, and

2. if an orbit settles into a sink of period k, we will not be able to detect any other sinks

with periodic orbits associated with the Poincaré Map due to the orbit already being

at the stable sink of period k.

The first limitation means that we will not be able to see any saddle points on the

bifurcation diagram. The effect of this is that fixed points on the bifurcation diagram will

sometimes seem to disappear and appear as a parameter is increased, whereas the actual

situation is such that they are being created and annihilated by saddle-node bifurcations.

This is seen from the abrupt “jump” in the branch of fixed points in region 1, as well as

the appearance of higher-period orbits for certain parameters in region 1. See figure 5.9 for

clarification of this.

The second limitation means that a branch of fixed points will appear to bifurcate into

two branches of fixed points via period-doubling, with one branch of period k visible on the

bifurcation diagram but the other branch will be missing. In actuality, the missing branch

is associated with another sink of the same period k that the orbit is not attracted to. See

figure 5.10 for clarification of this.

Thus, the bifurcation diagram in figure 5.8 represents an incomplete bifurcation diagram

in the sense that we can only determine how the period of a single sink changes as the

parameter is varied due to the method we chose to compute the Poincaré maps. Even

in the presence of such limitations, the bifurcation diagram in figure 5.8 provides enough

information for us to visualize how the orbit structure of the Poincaré Map changes as the

parameter is varied.

We see that the bifurcation diagram can be separated into sections that roughly corre-

spond to how the structure of the Poincaré Map of the Duffing oscillator changes as A0 is

increased, as described in the beginning of this section. Region 1 corresponds to lower forcing
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Figure 5.9: Possible saddle-node bifurcations in region 1 of bifurcation diagram, with a
possible branch of saddle points shown in red. Appearance and subsequent destruction of
higher-period orbits for certain parameters indicate presence of “unseen” branches of saddle
points in bifurcation diagram.
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Figure 5.10: Magnification of region of bifurcation diagram where possible missing branches
of fixed points from period-doubling bifurcations (indicated as green lines) are located.
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amplitudes where there are still two stable sinks in the Poincaré Map, hence the orbits are

of Period 1. We see that there are certain points where higher-period orbits can occur due

to saddle-node bifurcations.

Region 2 corresponds to the sinks bifurcating into saddles and increasing the number

of sinks on the Poincaré Map. This is seen from the existence of Period 2,3 and 4 orbits

on the Poincaré map. The bifurcation diagram suggests that parameters in the middle of

section 2 (between 8 and 8.2 mm) might give rise to a Strange Attractor on the Poincaré

Map, but examining the actual Poincaré map for those parameters reveal that they are

actually high-period orbits with no strange attractor structure. This emphasizes the fact

that the bifurcation diagram is really an attempt at visualizing a 3-D structure, and the

actual Poincaré Map should be checked to make sure that the orbits on the Poincaré Map

correspond to what is expected from theory.

Region 3 corresponds to strange attractor motions, giving rise to the strange attractor S

on the Poincaré map. In order to better visualize the strange attractor, the Poincaré map

is shown in figure 5.11 for A0 = 1.2 cm, and also magnification of the strange attractor to

emphasize the fractal nature of the structure. The Poincaré map was generated by simulating

a time series for 90000 seconds using the full model.

Furthermore, there is a “window of stability” in region 3 where there are period-5 orbits

instead of strange-attractor motions, similar to the description given by Holmes in [3]. See

figure 5.12 for a magnification of the bifurcation diagram. The Poincaré map for a period-5

orbit is shown in figure 5.13.

Finally, section 4 corresponds to a large enough forcing where the motion is periodic

once again as the orbits are attracted towards the sink that appears ‘outside’ the homoclinic

points.

Thus, we see that the experimental data as well as the full computational model support

the idea of irregular motions of the beam tip which give rise to a strange attractor structure

of the corresponding Poincaré Map, as suggested from the theory of the Duffing oscillator.

Furthermore,the experimental data as well as the bifurcation diagrams produced using the

full model are consistent with the bifurcations described by Holmes for the Duffing oscillator

(which is a simplification of the full model), indicating that the cubic approximation for Fstatic

used for Duffing’s oscillator models the original, more complex magneto-elastic system well.

We note that although both experimental data and numerical simulation agree with the

theory for the forced Duffing Oscillator as the forcing amplitude is increased, there is a dis-

crepancy between the experiment and the full model in that the forcing amplitudes required

for transient chaos and chaotic motions for the full model are larger than that observed ex-

perimentally. The full model predicts that forcing amplitudes of at least 9.6 mm are required

67



Figure 5.11: Poincaré Map for A0 = 1.2 cm and f = 10.43 Hz from numerical simulations of
the full model and magnifications of the resulting strange attractor structure to emphasize
the fractal features. 68



Figure 5.12: Magnification of bifurcation diagram for 9.75 mm ≤ A0 ≤ 9.9 mm, showing
a parameter “window of stability” of period-5 orbits amidst parameters which give rise to
chaotic motions.
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Figure 5.13: Projected orbits (blue) and corresponding Poincaré Map points (red) from
numerical Simulations : Full Model with A0 = 9.8 mm and f = 10.43 Hz.

for sustained irregular motions/orbits along a strange attractor, but experimentally we found

that a forcing amplitude of 4.31 mm was enough to induce such motions. It could be possible

that the experimentally-observed irregular motions were long transients, but other possible

reasons for the discrepancy include lateral oscillations on the apparatus from the shaker due

to imperfect fabrication of the mainframe as well as the bifurcation diagram of the full model

not taking into account the asymmetric case where the magnets are not perfectly symmetric

with respect to the vertical beam position. Although the full model’s predictions do not

match the experimental data closely, it is still useful in exploring possible bifurcations of the

system as certain parameters are varied. A last example of this is presented below.

5.4 Bifurcations for varying magnetic field strengths

A bifurcation diagram is presented in figure 5.14 for increasing magnet strengths Bsurface

(while keeping the magnet strengths of both magnets equal), and a forcing amplitude of

A0 = 9.8 mm (or P = 65.9) with frequency f = 10.43 Hz. The computational setup is

the same as that of the bifurcation diagram for increasing A0. We see roughly the same

behavior as for when the forcing amplitude is increased. As Bsurface is increased, a Period-1

orbit bifurcates into a Period-3 orbit, and later on period-doubling bifurcations occur until

we reach a region where chaotic motions occur. Some branches of the fixed points from the
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Figure 5.14: Bifurcation diagram for increasing magnetic field strengths for d = 1.39 cm,
A0 = 9.8 mm and f = 10.43 Hz. The parameter window of stability of period-5 orbits amidst
parameters which give rise to chaotic motions is indicated.

bifurcations are missing due to reasons given in subsection 5.3.3. We also observe a ‘window

of stability’ where period-5 orbits occur instead of chaotic orbits.

Thus, we see that the full model is useful in studying the bifurcations of the system

as physical parameters are varied. It is possible to generate bifurcation diagrams for other

physical parameters such as beam dimensions or magnet dimensions.
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Chapter 6

Summary and Conclusion

We have developed a computational model for the magneto-elastic system consisting of a

cantilevered beam placed in a non-uniform magnetic field created by two cylindrical magnets.

The computational model is based on physical parameters as inputs, and this was achieved

by combining the governing ODE for the modal amplitude of the beam with a numerical

solution to find the magnetic field for any given point along and near the beam. The main

result is the computation of all the terms involved in the static case as given in equation

2.1.6. A term can then be added onto the ODE to account for periodic forcing of the whole

system.

We have also constructed an experimental setup of the system in order to compare the

results obtained from experiment with those from the computational model. We also check

our results against the theory for a Duffing oscillator, which models the system well if the

system is in a double-well potential. In the static case, the experimental results agree with the

results from the computational model to within experimental error. In the case of sinusoidal

forcing of the system, the computational model does not quantitatively display as good an

agreement with the experimental results as that of the static case, but still agrees well with

Duffing oscillator theory in terms of qualitative changes in the orbits of the Poincaré Map

that occur as the forcing parameter is increased.

The computational model is more flexible in the sense that we are able to investigate the

behaviour of the system by varying physical experimental parameters, and hence allowing

us to create bifurcation diagrams and bifurcation sets such as those presented in section 4.3.

Double-well and triple-well potentials were observed in the computational model as a physical

parameter such as magnet spacing was increased, and this was observed experimentally as

well. More importantly, the computational model also enables us to visualize the orbits of

the periodically-forced system via the Poincaré Map as the system parameters are increased,
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allowing for the estimation of parameters which would gives rise to chaotic orbits. Such a

model would be a useful tool in aiding the design of magneto-elastic systems such as magnetic

levitation transportation system [25] prior to their construction.

However, the way that the computational model is defined numerically also makes it not

amenable to analytic methods. In some cases the system is well-modelled by a cubic or cubic-

quintic Duffing oscillator, whose dynamics have been analyzed [3] and for which analytical

approximate solutions are known [26]. It might be possible to treat the problem analytically

by examining the equation that results by substituting the equation for the magnetic field

that involves elliptic integrals into the governing ODE for the modal amplitude, but we

suspect that the resulting problem will be no easier to solve.

Among possible future work that could be undertaken in continuation of the work pre-

sented here would be to design a control scheme based on physical system parameters to

stabilize periodic orbits. Such control of chaos based on delayed linear feedback using forcing

frequency as a control parameter has already been investigated by Hikihara and Kawagoshi

[16], and so it might be possible to use the computational model that has been presented

here to simulate the system with a physical parameter (such as the ratio of the magnetic

strength of one magnet to the other ).

On the same note, another possible avenue would be to consider the system as the mag-

netic field strengths are varied periodically in time. This would be similar to investigating the

physical system where the cantilevered ferromagnetic beam is placed between two solenoids

through which alternating currents (AC) are being passed through them, with the alter-

nating currents not necessarily having the same phase. After all, the computational model

already approximates the cylindrical magnets as ideal solenoids. This periodic variation in

magnetic field strengths can be interpreted as another external source of periodic forcing on

the system, only that this forcing directly affects Fstatic as presented in equation 2.1.6 instead

of being an external forcing term such as Pcos(ωt). Such a setup would have several param-

eters that would lend themselves to investigation such as the amplitudes, frequencies and

relative phases of the variations of the magnetic field strengths of both magnets. It would

also be interesting to compute the orbits of the system in the presence of both variations in

magnetic field strengths as well as external forcing of the system. Since the computational

model demonstrated good qualitative agreement with experiment and theory in the cases

studied here, we would expect the same as well when considering such variations in magnetic

field strengths.
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Appendix A

Derivation of the governing PDE for

the beam displacement v(t) using

linear beam theory and differential

elements

Consider a differential beam element with uniform cross-sectional area shown in figure A.1.

The differential element has differential arc-length ds, and is subject to body forces Fx, Fy

and body moments C. One end of the element (labelled side 1) has a vertical displacement

v from the x-axis, with given directions of shear Q and axial force T as well as moment M

defined in a positive direction. The other end of the element (labelled side 2) has a vertical

displacement v+ dv from the y-axis, with given directions of differential shear Q+ dQ, axial

force T + dT and moment M + dM defined in a positive direction. The given coordinate

system also undergoes translation along the y direction in inertial space. Furthermore, let

m be the mass per unit length along the beam.

If we assume that the element does not undergo deformation in the x-direction (that is,

u(s, t) = 0), this implies that the sum of forces acting on the element in the x direction is

zero. Thus,

Fxds+ (T + dT )− T = 0, (A.0.1)

Fxds+ dT = 0, (A.0.2)

dT

dx
= −Fx, (A.0.3)
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Figure A.1: Coordinate system and related quantities for the differential beam element.

T (s) = −
∫ s

0

Fx ds+ c. (A.0.4)

We see that T (0) = c. However, T (0) is simply the axial reaction force at the cantilever

point s = 0 in reaction to the applied axial body force Fx over the whole beam, and so

T (0) =
∫ L
0
Fx ds. Thus,

T (s) = −
∫ s

0

Fx ds+

∫ L

0

Fx ds, (A.0.5)

T (s) =

∫ L

s

Fx ds. (A.0.6)

We now consider forces in the y direction. Doing this gives

(Q+ ∂Q)−Q+ Fy∂s = (m∂s)(v̈ + V̈0), (A.0.7)

∂Q

∂s
+ Fy = m(v̈ + V̈0), (A.0.8)

where we have replaced normal derivatives with partial derivatives to account for the depen-

dence of quantities on v and therefore on t since v is a function of t.

To find an expression for ∂Q
∂s

, we consider a moment balance about the mid-point of side

2. Assuming that ds ≈ dx, this gives

M − (M + ∂M)− C ∂s+ T ∂v −Q∂s = 0, (A.0.9)
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−∂M − C ∂s+ T ∂v −Q∂s = 0, (A.0.10)

Q = −∂M
∂s
− C + T

∂v

∂s
, (A.0.11)

∂Q

∂s
= −∂

2M

∂s2
− ∂C

∂s
+

∂

∂s

(
T
∂v

∂s

)
. (A.0.12)

and so substituting equation A.0.12 into equation A.0.8 gives

Fy −
∂2M

∂s2
− ∂C

∂s
+

∂

∂s

(
T
∂v

∂s

)
= m(v̈ + V̈0). (A.0.13)

Euler-Bernoulli beam theory states that the bending moment M is related to the dis-

placement v by

M = D
∂2v

∂s2
, (A.0.14)

where D = EI, E is the Young’s Modulus of the beam material and I is the second area

moment of inertia [20].

Hence, substituting equation A.0.14 for the bending moment into equation A.0.13 gives

Fy −D
∂4v

∂s4
− ∂C

∂s
+

∂

∂s

(
T
∂v

∂s

)
= m(v̈ + V̈0). (A.0.15)

or

Fy −D
∂4v

∂s4
+

∂

∂s

(
−C + T

∂v

∂s

)
= m(v̈ + V̈0). (A.0.16)

which is the PDE that is given in equation 2.1.1.

We can also substitute equation A.0.14 into equation A.0.11 to get

Q = −D∂
3v

∂s3
− C + T

∂v

∂s
, (A.0.17)

The spatial cantilever boundary conditions are given as follows:

1. Zero displacement at cantilever point : v(0, t) = 0.

2. Zero slope at cantilever point : ∂v
∂s

(0, t) = 0.

3. Zero moment at beam tip : M(L) = 0 , so ∂4v
∂s4

(L, t) = 0 from equation A.0.14.

4. Zero shear at beam tip : Q(L) = 0, so D ∂3v
∂s3

(L, t) + C(L, t) = 0 from equation A.0.17.
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Appendix B

Derivation of the governing ODE for

the modal amplitude a(t)

The governing partial differential equation given for v(t) in equation 2.1.2 (which was also

derived in Appendix A) is repeated below:

Fy −Dv′′′′ − C ′ + [Tv′]
′
= m

(
v̈ + V̈0

)
, (B.0.1a)

T =

∫ L

s

Fx ds. (B.0.1b)

We substitute the single-mode approximation v(s, t) = φ(s)a(t) to obtain

Fy −Dφ′′′′a− C ′ + [Tφ′]
′
a = mφä+mV̈0. (B.0.2)

We then multiply both sides of equation B.0.2 by φ(s) and then take the integral over s

from 0 to L for both sides to get

∫ L

0

Fyφ ds−Da
∫ L

0

φ′′′′φ ds−
∫ L

0

C ′φ ds+ a

∫ L

0

[Tφ′]
′
φ ds = mä

∫ L

0

φ2 ds+mV̈0

∫ L

0

φ ds.

(B.0.3)

Using the single-mode approximation, the spatial boundary conditions for a cantilevered

beam under a body forces and moments (See Appendix A) imply that:

1. φ(0) = 0 (Zero displacement at cantilever point),

2. φ′(0) = 0 (Zero slope at cantilever point),
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3. φ′′(L) = 0 (Zero moment at beam tip),

4. Daφ′′′(L) + C(L) = 0 (Zero shear at beam tip),

5. T (L) = 0 (From the definition of T in equation B.0.1)

Looking at the terms in equation B.0.3 and using integration by parts, we have

a

∫ L

0

[Tφ′]
′
φ ds = a

(
Tφ′φ|L0 −

∫ L

0

Tφ′2 ds

)
= −a

∫ L

0

Tφ′ 2 ds, (B.0.4)

and

−Da
∫ L

0

φ′′′′φ ds−
∫ L

0

C ′φ ds

= −Da
(
φ′′′φ|L0 − φ′′φ′|L0 +

∫ L

0

φ′′ 2 ds

)
−
(
Cφ|L0 −

∫ L

0

Cφ′ ds

)
= −Daφ′′′(L)φ(L)− C(L)φ(L)−Da

∫ L

0

φ′′ 2 ds+

∫ L

0

Cφ′ ds

= −φ(L) [Daφ′′′(L) + C(L)]−Da
∫ L

0

φ′′ 2 ds+

∫ L

0

Cφ′ ds

= −Da
∫ L

0

φ′′ 2 ds+

∫ L

0

Cφ′ ds,

(B.0.5)

Also, we have defined φ such that
∫ L
0
φ2 ds = 1. Hence, substituting equations B.0.4 and

B.0.5 into equation B.0.3 gives

∫ L

0

Fyφ ds−Da
∫ L

0

φ′′ 2 ds+

∫ L

0

Cφ′ ds− a
∫ L

0

Tφ′ 2 ds = mä+mV̈0

∫ L

0

φ ds. (B.0.6)

Rearranging terms gives

mä =

∫ L

0

Cφ′ ds−
[∫ L

0

Tφ′ 2 ds+D

∫ L

0

φ′′ 2 ds

]
a+

∫ L

0

Fyφ ds−mV̈0
∫ L

0

φ ds (B.0.7)

which is the desired equation in equation 2.1.4.
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Appendix C

Derivation of equation for

magnetization of beam

For any given point on the beam, let â be a unit vector tangent to the beam at that point,

and let n̂ be a unit vector normal to the beam at that point. For the coordinate system

shown in figure 2.1, let ı̂ be a unit vector along the x-axis and ĵ be a unit vector along the

y-axis. Let γ and ψ be angles defined against the local magnetic field B for the x-axis and

the beam respectively, as illustrated in figure C.1. The geometry is such that ψ = π
2

+ θ− γ.

Let B0 be the magnitude of the magnetic field at the point on the beam. Thus, we can

define Bx = B0cos(γ) and By = B0sin(γ), where B = Bx ı̂ +By ĵ

Under the assumptions given in section 2.2, the magnetization per unit length of the

Figure C.1: Coordinate systems and relevant angles. Adapted from figure 4b) in [1].
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beam in the magnetic field can be written as [11]

M =
χAB0

µ0µr
(cos(ψ) n̂ + µrsin(ψ) â), (C.0.1)

where A is the cross-sectional area of the beam, χ is the volumetric magnetic susceptibility

of the beam material, µr = χ+1 is the relative magnetic permeability and µ0 is the magnetic

constant, µ0 = 4π ∗ 10−7 V s
mA

.

We want to write M in the form M = Mx̂ı + My ĵ. The coordinate systems are related

by the rotation

â = cos(θ) ı̂ + sin(θ) ĵ,

n̂ = −sin(θ) ı̂ + cos(θ) ĵ.
(C.0.2)

Hence,

M =
χAB0

µ0µr

[
cos
(π

2
+ θ − γ

)
(−sin(θ) ı̂ + cos(θ) ĵ) + µr sin

(π
2

+ θ − γ
)

(cos(θ) ı̂ + sin(θ) ĵ)
]
.

(C.0.3)

Since
B0cos

(π
2

+ θ − γ
)

= B0(cos(θ)sin(γ)− sin(θ)cos(γ))

= Bycos(θ)−Bxsin(θ),

(C.0.4)

and similarly

B0sin
(π

2
+ θ − γ

)
= Bysin(θ) +Bxcos(θ).

(C.0.5)

Thus, we have

M =
χA

µ0µr
[(Bycos(θ)−Bxsin(θ))(−sin(θ) ı̂ + cos(θ) ĵ)

+ µr (Bysin(θ) +Bxcos(θ))(cos(θ) ı̂ + sin(θ) ĵ)].

(C.0.6)

Rearranging the terms along with using µr = χ+ 1 gives

M =
χA

µ0µr
([(1 + χcos2(θ))Bx + χ sin(θ)cos(θ)Bx ]̂ı

+ [χsin(θ)cos(θ)Bx + (1 + χsin2(θ))By ]̂j).

(C.0.7)
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Thus,

Mx =
χA

µ0µr

[
(1 + χcos2(θ))Bx + χ sin(θ)cos(θ)By

]
(C.0.8a)

My =
χA

µ0µr

[
χsin(θ)cos(θ)Bx + (1 + χsin2(θ))By

]
(C.0.8b)
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Appendix D

Creo (Pro/E) Model

The mainframe along with the magnets are modelled in Pro/E. The model is shown in figure

D.1.

The mass properties are shown in figure D.2, with the center of mass of the system

indicated relative to the Pro/E coordinate system. We see that the axis of the connection

hole is close to the lateral and vertical components of the center of mass of the system.
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Figure D.1: Various views of mainframe model with indicated Pro/E coordinate system
along the axis of the connection hole to the shaker.

87



Figure D.2: Mass properties of Pro/E model, with center of mass of system indicated relative
to the coordinate system.

88



Appendix E

Circuit Schematic
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Figure E.1: Schematic of electronic used to collect and process data, with major circuit
blocks indicated.
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Appendix F

Matlab Code

We present the main code that was used to calculate Fstatic and obtain data from numerical

simulations. Other secondary code was written to process the generated data, but they are

omitted here as the goal is to show the main algorithms used to compute Fstatic.

Two important differences in the code must be noted:

1. The coordinate system in the code is different from the coordinate system given in

the text above. The coordinate system zero is located at the base directly below the

vertical beam position. The “x” axis in the code corresponds to the “y” axis in text,

and the “y” axis in the code corresponds to the “-x” axis in the text.

2. The variable ”d” in the code refers to the distance between the closer edges of the

magnets, and not the distance between magnet centers. This was done because it is

experimentally easier to measure the former.

F.1 Main Script to calculate Fstatic and perform numer-

ical simulations

%%%%%%%%%%%%% Input Parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Elec tromagnet ic cons tan t s / Proper t i e s

miu 0 = 4∗pi ∗10ˆ−7; %Permeab i l i t y , T m/A

Xi = 1∗10ˆ3; %Su s c e p t i b i l i t y

miu r = Xi + 1 ; %Re la t i v e p e rmeab i l i t y
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%Beam Proper t i e s

L = 10.88∗10ˆ−2; %Length o f beam , m

t h i c k n e s s = 0.254∗10ˆ−3; %Thickness o f beam , m

rho = 7 .833∗10ˆ3 ; %Densi ty o f beam , kg/mˆ3

width = 0.95∗10ˆ−2;%5.4∗10ˆ−3; %Width o f beam ,m

Area = width∗ t h i c k n e s s ; %Cross−s e c t i o n a l area o f beam , mˆ2

E = 206843∗10ˆ6; % Young ’ s Modulus , Pa

I = ( width∗ t h i c k n e s s ˆ3)/12 ; % Moment o f Ine r t i a , mˆ4

D = E∗ I ; % N mˆ2

m = rho∗Area ; %Mass o f beam per l en g t h kg/m

%Magnet Proper t i e s

radiusMagnet = 2.54/2∗10ˆ−2; %m

heightMagnet = radiusMagnet /2 ; %m

B CenterSurface1 = 0 . 2 1 ; %Magnet f i e l d s t r en g t h o f magnet 1 , T

B CenterSurface2 = 0 . 2 1 ; %Magnet f i e l d s t r en g t h o f magnet 1 , T

%Magnet Placement

d = 1.39∗10ˆ−2; %Spacing between edges o f magnets , m

h = 12.8∗10ˆ−2 − L ; %Height o f beam t i p above ground , m

o f f s e t = 0 ;

%Shaker parameters

omega = 12∗2∗pi ; %Frequency , rad/ s

A0 = 0 ;%7∗10ˆ−3; %4.6∗4.5/12∗10ˆ−2; %Peak disp lacement , m

%Damping

d e l t a = 6 . 2 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Equations f o r Phi (beam mode ) , i t s d e r i v a t i v e s and r e l a t e d q u a n t i t i e s

%( Constant Beam mode)

modeConst = 1 .875104069 ;

k = modeConst/L ;

po in t s = 2000 ; %Number o f g r i d po in t s over s
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s = linspace (0 ,L , po in t s ) ’ ;

delX = ( s (2 ,1)− s ( 1 , 1 ) ) ;

K = (−cos ( modeConst)−cosh ( modeConst ) ) / ( sin ( modeConst)+sinh ( modeConst ) ) ;

Phi = 0 . 5∗ (K∗( sin ( k∗ s)−sinh ( k∗ s ))+( cos ( k∗ s)−cosh ( k∗ s ) ) ) ;

normal i ze r = −1/sqrt ( delX∗trapz ( Phi . ˆ 2 ) ) ;

Phi = normal i ze r ∗Phi ;

dPhi = normal i ze r ∗0 .5∗k∗ (K∗( cos ( k∗ s)−cosh ( k∗ s ))+(− sin ( k∗ s)−sinh ( k∗ s ) ) ) ;

ddPhi = normal i ze r ∗0 .5∗kˆ2∗(K∗(−sin ( k∗ s)−sinh ( k∗ s ))+(−cos ( k∗ s)−cosh ( k∗ s ) ) ) ;

dddPhi = normal i ze r ∗0 .5∗kˆ3∗(K∗(−cos ( k∗ s)−cosh ( k∗ s ))+( sin ( k∗ s)−sinh ( k∗ s ) ) ) ;

ddddPhi = normal i ze r ∗0 .5∗kˆ4∗(K∗( sin ( k∗ s)−sinh ( k∗ s ))+( cos ( k∗ s)−cosh ( k∗ s ) ) ) ;

dPhiSquared = dPhi .∗ dPhi ;

In t Ph i = delX∗trapz ( Phi ) ;

Int Phi Squared = delX∗trapz ( Phi . ˆ 2 ) ;

Int dPhi Squared = delX∗trapz ( dPhi . ˆ 2 ) ;

Int ddPhi Squared = delX∗trapz ( ddPhi . ˆ 2 ) ;

Phi L = Phi (end ) ;

dPhi L = dPhi (end ) ;

dddPhi L = dddPhi (end ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Ca l cu l a t e a l l Forces %%%%%

%Modal d i sp lacement

g r i d S t a r t = −(d/2+2∗ radiusMagnet ) ;

gridEnd = (d/2+2∗ radiusMagnet ) ;

n = 1000 ; %Grid po in t s over modal d i sp lacement

de l = ( gridEnd−g r i d S t a r t )/n ;

a = [ g r i d S t a r t : de l : gridEnd ] / Phi L ;
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%Displacement across a l l o f the beam fo r each modal d i sp lacement

v = zeros ( s ize ( s , 1 ) , s ize ( a , 2 ) ) ;

v = Phi∗a ;

Fx = zeros ( s ize (v , 1 ) , s ize (v , 2 ) ) ;

Fy = zeros ( s ize (v , 1 ) , s ize (v , 2 ) ) ;

kappa = zeros ( s ize (v , 1 ) , s ize (v , 2 ) ) ;

Moment = zeros ( s ize (v , 1 ) , s ize (v , 2 ) ) ;

y = h+L−s ;

for i = 1 : s ize (v , 2 ) %For each modal d i sp lacement

i / s ize (v , 2 )

theta = dPhi∗a (1 , i ) ;

x = v ( : , i ) ;

[ Fx ( : , i ) Fy ( : , i ) kappa ( : , i ) C( : , i ) ] =

getMagneticForce ( radiusMagnet , heightMagnet /2 ,d , o f f s e t , B CenterSurface1 , . . .

B CenterSurface2 , width , th i cknes s , Xi , theta , x , y , 0 . 00000000001 ,0 . 00000000001) ;

end

ds = delX ;

%Ca lcu l a t e terms in s t a t i c f o r c e d i s t r i b u t i o n

CumFy = ds∗cumtrapz(−Fy , 1 ) ;

TL = CumFy(end , : ) ;

T = ones ( s ize (CumFy, 1 ) , 1 ) ∗TL−CumFy;

t i p = a∗Phi L ; %Beam t i p d i sp lacement

TransverseForce = ds∗trapz (Fx . ∗ ( Phi∗ ones (1 , s ize (Fx , 2 ) ) ) , 1 ) . / (m∗ Int Phi Squared )∗Phi L ;

momentForce = ( ds∗trapz (C. ∗ ( dPhi∗ ones (1 , s ize (C, 2 ) ) ) , 1 ) ) . / (m∗ Int Phi Squared )∗Phi L ;

Axia lForce = −ds∗trapz ( T. ∗ ( dPhiSquared∗ ones (1 , s ize (T, 2 ) ) ) , 1 ) . / (m∗ Int Phi Squared ) . ∗ t i p ;

BeamForce = −D∗ Int ddPhi Squared . / (m∗ Int Phi Squared )∗ t i p ;

magneticForce = TransverseForce + momentForce + Axia lForce ;
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TotalForce = magneticForce + BeamForce ;

%Plot s t a t i c f o r c e d i s t r i b u t i o n

f igure ( ) ;

hold on ;

plot ( t ip , TransverseForce , t ip , momentForce , t ip , AxialForce , t ip , BeamForce , t ip , TotalForce ) ;

grid on ;

hold o f f ;

legend ( ’ F {Transverse } ’ , ’ F {Moment} ’ , ’ F {Axial } ’ , ’ F {Beam} ’ , ’ F { s t a t i c } ’ ) ;

xlabel ( ’Beam Tip Displacement , v { t i p } (m) ’ ) ;

ylabel ( ’ Force /Mass (N/kg ) ’ ) ;

%Forcing ampl i tude f o r Duf f ing o s c i l l a t o r .

F = Int Ph i ∗omegaˆ2∗A0∗Phi L /( Int Phi Squared ) ;

%Numerical S imulat ion

t0 = 0 ; %I n i t i a l time ( s )

t f = 10 ; %Fina l time ( s )

x0 = [1∗10ˆ−2 0 ] ’ ; %I n i t i a l po in t

Period = 2∗pi/omega ; %Forcing Period

NumPoincarePoints = ( t f−t0 )/ Period ;

NumMiddlePoints = 1000 ; %Number o f po in t s between Poincare po in t s

tspan = t0 : Period /NumMiddlePoints : t f ; %Time po in t s

% Set t o l e r an c e s

opt ions = odeset ( ’ OutputSel ’ , 1 , ’ OutputFcn ’ , @odeplot , ’ RelTol ’ ,10ˆ−10 , ’ AbsTol ’ ,10ˆ−8);

f igure ( ) ;

[ t , y ] = ode113 (@BeamEndSimTableLookup , tspan , x0 , opt ions , t ip , TotalForce , de l ta , F , omega ) ;

%%% Plot Poincare Map %%%

index = [ 1 : NumMiddlePoints : s ize ( t , 1 ) ] ;

tP = tspan ( index ) ;
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yP1 = y ( index , 1 ) ;

yP2 = y ( index , 2 ) ;

timeFrac = 0 . 8 ; %Fract ion o f time s e r i e s to use in poincare Map

s i zeT = s ize ( t , 1 ) ;

t imeS ize = ce i l ((1− timeFrac )∗ s i zeT )+1;

c = colormap ( jet ( s ize (yP1 , 1 ) ) ) ; %use co l o r s

f igure ( )

hold on ;

for i = 1 : s ize (yP1 , 1 )

plot (yP1( i ) , yP2( i ) , ’ . ’ , ’ MarkerSize ’ , 4 , ’ Color ’ , c ( i , : ) ’ ) ;

end

hold o f f ;

xlabel ( ’ Displacement , a (m) ’ ) ;

ylabel ( ’ Ve loc i ty , a (m/ s ) ’ ) ;

minX = min(min( y ( : , 1 ) ) ) ;

maxX = max(max( y ( : , 1 ) ) ) ;

minY = min(min( y ( : , 2 ) ) ) ;

maxY = max(max( y ( : , 2 ) ) ) ;

axis ( [ minX maxX minY maxY ] ) ;

grid on ;

%%% p l o t FFT of time s e r i e s %%%

FFTSampleFrac = 0 . 7 ; %Fract ion o f time s e r i e s to use in FFT

ySample = y ( f loor ( s ize ( t ,1)∗(1−FFTSampleFrac ) ) : s ize ( t , 1 ) , : ) ;

tSample = t ( f loor ( s ize ( t ,1)∗(1−FFTSampleFrac ) ) : s ize ( t , 1 ) ) ;

averageDt = mean( d i f f ( tSample ) ) ;

SampleFreq = 1/ averageDt ;

SampleLength = s ize ( ySample ( : , 1 ) , 1 ) ;

NFFT = 2ˆnextpow2( SampleLength ) ;

96



yFFT = f f t ( ySample ( : ,1)−mean( ySample ( : , 1 ) ) ,NFFT)/ SampleLength ;

f = SampleFreq /2∗ linspace (0 , 1 ,NFFT/2+1);

f igure ( ) ;

plot ( f , abs (yFFT( 1 :NFFT/2+1))) ;

xlabel ( ’ Frequency (Hz) ’ )

ylabel ( ’FFT Power ’ )

F.2 Function to compute magnetic forces and moments

function [ Fx Fy kappa C] = getMagneticForce ( a , b , d , o f f s e t , . . .

B CenterSurface1 , B CenterSurface2 , width , th i cknes s , Xi , theta , xPoint , yPoint , dx , dy )

%Ca lcu l a t e magnetic f i e l d s t r e n g t h s and d e r i v a t i v e s o f two magnets

[ Bx By dBxx dByy dBxy dByx ] = PointTwoMagnetFieldDerivatives ( a , b , d , o f f s e t . . .

, B CenterSurface1 , B CenterSurface2 , xPoint , yPoint , dx , dy ) ;

%Mu l t i p l i c a t i o n cons tant

c = Xi∗width∗ t h i c k n e s s /((4∗ pi ∗10ˆ−7)∗(Xi +1)) ;

%Magnet i za t ions

M1 = c∗(−(1+Xi∗cos ( theta ) . ˆ 2 ) . ∗By + Xi∗ sin ( theta ) . ∗ cos ( theta ) . ∗Bx ) ;

M2 = c∗(−Xi∗ sin ( theta ) . ∗ cos ( theta ) . ∗By + (1+Xi∗ sin ( theta ) . ˆ 2 ) . ∗Bx ) ;

%x and y f o r c e s

Fy = −(M1.∗dByy + M2.∗−dByx ) ;

Fx = M1.∗−dBxy + M2.∗dBxx ;

B2 = 2∗( Xi)∗(−By ) . ∗ ( Bx ) ;

B3 = Xi ∗(By.ˆ2−Bx . ˆ 2 ) ;

%Moments

C = 1/2∗ c ∗(B2 .∗ cos (2∗ theta )−B3 .∗ sin (2∗ theta ) ) ;

end
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F.3 Function to compute magnetic field and deriva-

tives

function [ Bx By dBxx dByy dBxy dByx ] = PointTwoMagnetFieldDerivatives ( a , b , d , o f f s e t . . .

, B CenterSurface1 , B CenterSurface2 , xPoint , yPoint , dx , dy )

%Fi r s t magnet

nI1 = ( sqrt ( (2∗b)ˆ2+a ˆ2)/b )∗ ( B CenterSurface1 )/(4∗ pi ∗10ˆ−7);

n = s ize ( xPoint , 1 ) ; %Number o f po in t s

%Radia l and h e i g h t components o f magnetic f i e l d

Br1 = zeros (n , 9 ) ; Bz1 = zeros (n , 9 ) ;

Br2 = zeros (n , 9 ) ; Bz2 = zeros (n , 9 ) ;

%Grid scheme

% 7

% 6

% 1 2 5 8 9

% 4

% 3

%Magnet p o s i t i o n

yCenter = b ; xCenter = −(d/2+a+o f f s e t ) ;

xMid = xPoint−xCenter ;

yMid = yPoint−yCenter ;

%Number o f beam po in t s across rows

%Number o f i n t e g r a t i o n po in t s across columns

xArray = [ xMid−2∗dx , xMid−dx , xMid , xMid , xMid , xMid , xMid , xMid+dx , xMid+2∗dx ] ;

yArray = [ yMid , yMid , yMid−2∗dy , yMid−dy , yMid , yMid+dy , yMid+2∗dy , yMid , yMid ] ;

%Ca lcu l a t e magnetic f i e l d from magnet 1

for i = 1 : 9

x = xArray ( : , i ) ;
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y = yArray ( : , i ) ;

[ Bi Bj ] = BFie ldCyl inder (b , a , nI1 , abs ( x ) , y ) ;

Br1 ( : , i ) = sign ( x ) . ∗ Bi ;

Bz1 ( : , i ) = Bj ;

end

%Second magnet

nI2 = ( sqrt ( (2∗b)ˆ2+a ˆ2)/b )∗ ( B CenterSurface2 )/(4∗ pi ∗10ˆ−7);

%Magnet p o s i t i o n

yCenter = b ; xCenter = (d/2+a−o f f s e t ) ;

xMid = xPoint−xCenter ;

yMid = yPoint−yCenter ;

xArray = [ xMid−2∗dx , xMid−dx , xMid , xMid , xMid , xMid , xMid , xMid+dx , xMid+2∗dx ] ;

yArray = [ yMid , yMid , yMid−2∗dy , yMid−dy , yMid , yMid+dy , yMid+2∗dy , yMid , yMid ] ;

%Ca lcu l a t e magnetic f i e l d from magnet 2

for i = 1 : 9

x = xArray ( : , i ) ;

y = yArray ( : , i ) ;

[ Bi Bj ] = BFie ldCyl inder (b , a , nI2 , abs ( x ) , y ) ;

Br2 ( : , i ) = sign ( x ) . ∗ Bi ;

Bz2 ( : , i ) = Bj ;

end

%Compute t o t a l magnetic f i e l d and d e r i v a t i v e s

Br = Br1 + Br2 ;

Bz = Bz1 + Bz2 ;

Bx = Br ( : , 5 ) ;
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By = Bz ( : , 5 ) ;

%Der i v a t i v e s

dBxx = (1/12∗Br (: ,1)−2/3∗Br ( : ,2)+2/3∗Br (: ,8)−1/12∗Br ( : , 9 ) ) / ( dx ) ;

dByy = (1/12∗Bz(: ,3)−2/3∗Bz( : ,4)+2/3∗Bz(: ,6)−1/12∗Bz ( : , 7 ) ) / ( dx ) ;

dBxy = (1/12∗Br (: ,3)−2/3∗Br ( : ,4)+2/3∗Br (: ,6)−1/12∗Br ( : , 7 ) ) / ( dx ) ;

dByx = (1/12∗Bz(: ,1)−2/3∗Bz( : ,2)+2/3∗Bz(: ,8)−1/12∗Bz ( : , 9 ) ) / ( dx ) ;

end

F.4 Function to calculate magnetic field of an ideal

solenoid

Algorithm adapted from [6].

%Cyl inder has h e i g h t ’2 b ’

%Cyl inder has rad ius ’a ’

%Equ iva l en t So leno id wi th ’n ’ turns per un i t l e n g t h carry ing current ’ I ’

function [ B r , B z ] = BFie ldCyl inder (b , a , nI , r , z )

miu 0 = 4∗pi ∗10ˆ−7;

B 0 = ( miu 0/pi )∗ nI ; %Magnetic f i e l d on magnet su r f a c e .

zPlus = z + b ;

zMinus = z − b ;

aPlus = a . / sqrt ( zPlus . ˆ2 + ( r+a ) . ˆ 2 ) ;

aMinus = a . / sqrt ( zMinus .ˆ2 + ( r+a ) . ˆ 2 ) ;

bPlus = zPlus . / sqrt ( zPlus . ˆ2 + ( r+a ) . ˆ 2 ) ;

bMinus = zMinus . / sqrt ( zMinus .ˆ2 + ( r+a ) . ˆ 2 ) ;

gamma = ( a−r ) . / ( a+r ) ;

kPlus = sqrt ( ( zPlus . ˆ2 + ( a−r ) . ˆ 2 ) . / ( zPlus . ˆ2 + ( a+r ) . ˆ 2 ) ) ;

kMinus = sqrt ( ( zMinus .ˆ2 + ( a−r ) . ˆ 2 ) . / ( zMinus . ˆ2 + ( a+r ) . ˆ 2 ) ) ;
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o n e z i e s = ones ( s ize (gamma, 1 ) , s ize (gamma, 2 ) ) ;

B r = B 0 ∗( aPlus .∗ E l l i p I n t ( kPlus , onez i e s , onez i e s ,− o n e z i e s )

−aMinus .∗ E l l i p I n t ( kMinus , onez i e s , onez i e s ,− o n e z i e s ) ) ;

B z = ( B 0∗a . / ( a+r ) ) . ∗ ( bPlus .∗ E l l i p I n t ( kPlus , abs (gamma) , onez i e s ,gamma)

−bMinus .∗ E l l i p I n t ( kMinus , abs (gamma) , onez i e s ,gamma) ) ;

end

F.5 Function to compute generalized elliptic integral

Algorithm taken from [6].

function [ out ] = E l l i p I n t ( kc , p , c , s )

t o l = 0 . 0 0 0 1 ;

k = abs ( kc ) ;

pp = p ;

cc = c ;

s s = s . / pp ;

em = ones ( s ize ( kc , 1 ) , s ize ( kc , 2 ) ) ;

f = cc ;

cc = cc + s s . / pp ;

g = k . / pp ;

s s = 2 .∗ ( s s+f .∗ g ) ;

pp = g + pp ;

g = em;

em = k + em;

kk = k ;

while (1 )

k = 2 .∗ sqrt ( kk ) ;
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kk = k .∗em;

f = cc ;

cc = cc + s s . / pp ;

g = kk . / pp ;

s s = 2 .∗ ( s s + f .∗ g ) ;

pp = g + pp ;

g = em;

em = k + em;

i f (abs ( g−k ) < g∗ t o l )

break ;

end

end

out = pi / 2 .∗ ( s s + cc .∗em ) . / ( em. ∗ ( em+pp ) ) ;

end
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