
Ambience is classy, or good for kids? Yelp Restaurant Photo Classification

Jee Ian Tam
Stanford University
Stanford, CA 94305
jeetam@stanford.edu

Abstract

We apply a convolutional neural network to solve the
multi-instance problem of assigning labels to a business
given one or more images of the business. We pose the
problem as a multi-label classification problem by assign-
ing labels to training images from their corresponding busi-
nesses. The evaluation metric used is the F1 score. We
fine-tune up to 80% the VGG-16 network, and evaluate the
binary relevance, label powerset and BP-MLL transforma-
tions used to deal with the multi-label classification prob-
lem. We find that the BP-MLL algorithm transformation
gives the highest F1 score of 0.75 over the test set. We also
find that the network is able to distinguish between the two
main label clusters (dinner and lunch) of the training and
test sets.

1. Introduction
Yelp is company that publishes crowd-sourced reviews

about local businesses, especially restaurants. A key part
of the Yelp platform is the ability of users to upload photos
of a restaurant’s interior and food as part of their dining
experience. Furthermore, restaurants can also provide
information about themselves via labels such as ”good for
lunch”, ”outdoor seating” and ”restaurant is classy”. The
photos that are uploaded by users provide rich business
information about these categories. Given images of a
business, Yelp would like to be able to predict labels of
that business. Yelp has thus released a dataset towards that
purpose on Kaggle, a platform where people compete in
machine learning challenges. I participated in a multi-label
classification challenge hosted by Yelp in this context,
where the challenge is to predict business labels solely
from the photos that have been uploaded by users.

The input to our system are images of shape 224x224x3,
and the output is a set of business labels. The training data
set consists of a list of businesses, their labels, and a cor-
responding set of images for each business. The test set

consists of a list of business with a corresponding set of im-
ages for each business. Our goal is to predict the labels of
the businesses in the test set. We approached the problem as
one of classifying the labels of images, and then aggregated
label predictions across constitutent images to predict the
labels of the corresponding business. We fine-tuned a pre-
trained convolutional network to predict the labels of im-
ages, and explored different kinds of transformation meth-
ods used to deal with the multi-label classification problem.

2. Related Work
The problem is a multi-instance learning (MIL) problem,

where each labeled business is associated with multiple
unlabeled instances (images), and we are trying to predict
the business labels from those unlabeled images. Keeler
et. al [1], Dietterich [2] and Maron, Lozana-Perez [3] first
explored methods for dealing with MIL problems. They
elaborate on the standard MI assumption, which takes each
instance (images in our case) to have an associated label
which is hidden. For the training step in our application,
we assume that the set of labels for images is equal to the
set of labels for businesses, propagate the labels of each
business to its constituent images, and focus on predicting
image labels from the images themselves. For the testing
step of our application, after computing label predictions
we use a simple metadata-based algorithm to infer the
business labels as follows : We use a SimpleMI algorithm
[4], where the metadata of the business is the mean statistic
over the image labels. That is, we compute the mean
label for a business by taking the mean of labels of its
constituent images, and compute a business label from
the mean label by thresholding over a pre-determined value.

The multi-instance learning approach detailed above
transforms the problem into one of multi-label classifica-
tion [6], where we aim to predict one or more labels for
each instance (image). There have been multiple methods
explored in the space of multi-label classification [7]. The
method of binary relevance [5] trains one independent
binary classifier per label. This method is straightforward

1

and easy to implement, the disadvantage of it is that it does
not consider correlations between labels. Another trans-
formation is the label powerset transformation [8], where
we create a binary classifier for each possible label com-
bination. While this method is able to capture correlations
between labels, the complexity of the transformation is 2N

where N is the number of labels. Thus, a relatively large
number of binary classifiers have to be trained, meaning
that this method is high-dimensional and requires more
data than other methods. Furthermore, in our case there are
only a few meaningful label clusters, and so this method
is additionally wasteful. Another powerful method for
dealing with multi-label classification problems is BP-MLL
[9] [10], which is an adaptation of backpropagation to
multi-label learning. Considering that we will be using
convolutional networks as classifiers, this is a method that
is suited for our application. We will elaborate more on
these methods in section 4.

We use a pre-trained VGG-16 [11] convolutional net-
work model as a base model and fine-tune it to our dataset.
The architecture of convolutional networks was taken
from Krizhevsky[12], and the main idea of fine-tuning
pre-trained networks on new datasets can be found in
[13]. Previous work of applying computer vision methods
for multi-label classification can be found in Boutell,
Lou and Brown [14], where they used various image
features as input to multiple binary classifier SVMs for
prediction of labels. Nam [15] investigated the use of
neural networks with BP-MLL in the context of multi-label
text classification, where they found that methods such as
dropout and ReLu units were effective when used with
BP-MLL. Other methods for multi-label learning in the
context of computer vision can be found in work by Dimou
and Tsoumakas [16], where methods such as BP-MLL,
MLkNN and RAkEL were explored.

3. Dataset and Features
The data set is provided by Yelp via a Kaggle com-

petition [17], and it consists of a map of business ids to
labels (only for the training dataset), a map of business
ids to photos, and the photos themselves. The photos vary
in resolution, the median resolution is 375 x 500. They
consist of pictures taken at various business establishments.
Yelp notes that there are duplicate photos in the training
data set due to users uploading the same photo more than
once, we choose to not remove these duplicates as they
do not impact the training process, and the duplicates
consist of a very small fraction (∼ 3%) of the total dataset.
The training dataset consists of roughly 2,000 businesses
and 230,000 photos, whereas the test dataset contains
roughly 10,000 businesses and roughly 240,000 photos.

Figure 1: Sample pictures and labels from training data set

Figure 2: Top 50 most frequent label sets in training dataset

Due to computational constraints we only train on a subset
(100,000 images) of the total training set, but we predict
labels for all images in the test set. A validation set of 1,000
images is used at every epoch to compute validation loss.
The validation set changes across training batches, as the
validation set is taken from a single-fold 10% of the current
training batch. Sample images can be found in figure 1

There are 9 possible labels for each business, and explo-
ration of the labels in the dataset shows that the labels are
not evenly distributed. The frequency and name of each in-
dividual label in the training dataset is presented in table 1:

ID Label Name Relative Frequency
0 Good for lunch 0.336
1 Good for dinner 0.497
2 Takes reservations 0.513
3 Outdoor seating 0.502
4 Restaurant is expensive 0.274
5 Has alcohol 0.625
6 Has table service 0.680
7 Ambience is classy 0.286
8 Good for kids 0.619

Table 1: Label Names and Frequencies
Furthermore, a bar graph showing the top 50 most frequent
business label sets in the training dataset is shown in figure 2

2

We see that the top 2 most frequent label sets are [Good
for dinner, Takes reservations, Expensive, Alcohol, Table
Service, Classy] and [Good for lunch, Outdoor Seating,
Good for kids]. Furthermore, we note that the most
frequent label combinations after those are generally
combinations of those two main label clusters. Thus, we
observe that there are two main label clusters in the data
set, the former corresponding to restaurants associated
with dinner, and the latter generally corresponding to
lunch or kid-friendly restaurants. We denote the former
as the DINNER label set, and the latter as LUNCH label set.

As we use a pre-trained VGG-16 network, we subtract from
each image the mean pixel BGR values [11] of [103.939,
116.779, 123.68] used to train the original network. We
downsample the input image dimensions to 224 x 224 via
bilinear interpolation (each image is maintained as a color
image, so each image input has size 224x224x3). We per-
form real-time data augmentation [18] before passing it into
the network. The augmentations are random operations as
presented below. Each operation has a 50% chance of being
applied to the input image.

• Value (brightness) change of +/- 5%

• Horizontal shift of 5 pixels to the left or right

• Rotation of +/- 5 degrees

• Horizontal Flip

• Crop of 90% of image

We do not extract features from the images to feed into
the network, but instead feed in raw image pixels into the
network (after performing the preprocesing steps noted
above). This is because we aim to progressively fine-tune
the VGG-16 network, and the original network took in raw
pixel values as well. Thus, in order to make sure that the
activations do not deviate too much when given the same
image when we fine-tune the network, we have to feed in
raw input pixels as well.

4. Methods
4.1. Multi-Label Classification Methods

In this section we elaborate on the BP-MLL algorithm,
which we used to achieve the best model performance
compared to binary relevance and label powerset.

Recall that binary relevance trains a binary classifier for
each label. In the context of fine-tuning VGG-16, this is
equivalent to replacing the last layer with N output neurons
(N being the number of labels), then placing a sigmoid layer
followed by a binary cross-entropy loss across each neuron.

This method is simple, but ignores label correlations.

Label powerset, on the other hand, trains a binary classifier
for each possible label combination. In our context, this
is equivalent to replacing the last layer with 2N neurons,
then placing a softmax layer follows by a categorical
cross-entropy loss across all neurons, similar to what would
be done for a multi-class classification problem, as done
in [12]. This method can capture label correlations, but is
exponential in the number of labels and thus can be harder
to train.

BP-MLL is an algorithm that was originally explored by
Zhang[9] with applications to functional genomics and text
categorization. It introduces a loss that takes into account
label correlations, and is an adaptation of backpropagation
for multi-label classification. Backpropagation[19][20] is
the process of propagating gradients from the loss back to-
wards the input layer of a neural network in order to com-
pute gradients for every weight in the network. Let Y rep-
resent the set of all possible labels. We replace the last layer
of VGG-16 with N output neurons, and the BP-MLL loss
for a batch is given as :

E =

m∑
i=1

Ei =

m∑
i=1

1

|Yi||Y i|

∑
(k,l)∈Yi×Y i

exp(−(cik − cil))

(1)
where m is the number of batch training examples, Ei is
the loss for the i-th training example, Yi ⊆ Y is the set of
labels of the i-th training example (in-set labels), Y i is the
complement of Yi (Y i = Y \Yi, out-of-set labels), and cqp
is the activation of the p-th neuron in the final layer for the
q-th training example.

From equation 1, we see that for a particular training
example i, minimizing Ei corresponds to maximizing the
difference between all activations corresponding to in-set
labels and all activations corresponding to out-of-set labels,
as BP-MLL enumerates over the cross-product pairs of
in-set and out-of-set labels. Thus, all activations corre-
sponding to in-set labels will be simultaneously optimized
to be higher, while activations for out-of-set labels will be
simultaneously optimized to be lower. Label correlations
(both in-set and out-of-set) are thus able to be captured
by minimizing the BP-MLL loss as presented above. The
gradients corresponding to BP-MLL loss can be found in
[9], we write our implementation in Theano[21] which
calculates gradients symbolically.

In order to predict binary labels for an input image from
the network output activations after optimizing the network
on BP-MLL loss, a threshold has to be either specified

3

or learnt. We use a variant of BP-MLL as presented by
Grodzicki[10] that allows for simultaneous threshold learn-
ing while training the convolutional network. In our con-
text, this method involves replacing the last layer of VGG-
16 with 2N output neurons, where for 0 ≤ p < N , the
2p-th output neuron corresponds to the activation for the p-
th label, and the (2p+1)-th output neuron corresponds to the
threshold for the p-th label. We ”squash” the output neuron
activations using a tanh activation for each neuron. Thus,
the final form of loss for a single training example is given
by :

Ei = K
[∑
(k,l)∈Yi×Y i

e−(c
i
2k−c

i
2l) + e−(c

i
2l+1−c

i
2k+1)

+
∑
r∈Yi

∑
t∈Yi

e−(c
i
2r−c

i
2t+1) +

∑
s∈Y i

∑
t∈Y i

e−(c
i
2t+1−c

i
2s)

]
(2)

where K =
1

2|Yi||Y i|+ |Yi|2 + |Y i|2
is a normalizing

factor. Minimizing the above loss not only minimizes the
differences between in-set label activations and out-of-set
label activations as per the original BP-MLL loss, it also
optimizes the thresholds such that the thresholds are as
low as possible from the in-set label activations (2nd sum-
mation term), and as high as possible from the out-of-set
label activations (3rd summation term). Furthermore,
minimizing the loss also results in lower threshold values
corresponding to labels in Yi compared to those of labels
in Y i (2nd exponential term in 1st summation term).
Thus, by minimizing the above loss, individual thresholds
for all labels are able to be learnt autonomously during
optimization of the network.

4.2. Convolutional Network Architecture

We use a pre-trained VGG-16 network as a starting net-
work, and replace the final layer of the network with a num-
ber of neurons that depends on which kind of loss that we
are testing, as detailed in section 4.1. The network architec-
ture is shown in figure 3 :

4.3. Multi-Instance Learning

In order to predict the label of a business given multiple
images of it, we compute label predictions for each of its
images, then calculate a mean label vector for the business
from its constituent images. We then compute the business
label via binarizing the mean label vector by thresholding
at 0.5. We experimented with different threshold schemes
such as using the prior label frequencies presented in table
2, but we find that a simple threshold at 0.5 gave the best
results.

Figure 3: Network architecture used (VGG-16)

5. Experiments / Results / Discussion
5.1. Training Details

The network was implemented in Keras [22], with the
pre-trained VGG-16 network weights obtained by convert-
ing the Caffe model [23]. The network was trained on an
NVIDIA GRID K520 GPU.

We experiment with the binary relevance, label powerset
and BP-MLL methods. We train on a set of 100,000
training samples. Due to memory constraints, we train on
batch sizes of 10,000. We use a mini-batch size of 20,
and validate on a single fold of 1,000 validation samples,
taken from 10% of the training batch. The mini-batch size
was chosen based on the amount of GPU memory available.

For each method, we fine-tune the original VGG-16 net-
work by progressively training layers starting from the final
layer up towards the input layer. The fine-tuning details are
shown below.

Fine-Tuned Layers Epochs Trained Initial Learning rate
Last Layer 2-3 8.7e-4
Top 16 (∼ 40% of net) 4-5 1.1e-4
Top 32 (∼ 80% of net) 5-6 1.5e-5

Table 2: Fine-Tuning details
The number of training epochs was chosen based on time
constraints, and we aim to spend more training epochs
on stages where we fine-tune more layers of the network.
We use mini-batch Gradient Descent with momentum and
learning rate decay, along with L2 weight regularization to
optimize the convolutional networks. For each fine-tuning
stage, the learning rate was chosen after a hyperparameter

4

search of 10 samples over a range of 1e2 using a small
validation set of 1,000 samples (single-fold). For the final
layer, the learning rate hyperparameter search range was
based around 1

10 of the original VGG-16 initial learning
rate (0.01) and for the layers in the middle of the network,
the search range was based around 1

100 of the original initial
learning rate. For the L2 regularization parameter, we use
the same value used for training the original VGG-16
network (5e-4). We use a learning rate decay of 0.98 and
momentum of 0.5. The learning rate is divided by 10 when
the validation loss plateaus.

We also used with RMSProp[24] with similar learning rates
for initial training of the final layer of the network.

5.2. Evaluation Metrics

The metric that the Kaggle submissions are judged on rela-
tive to the test set is the F1 score. The F1 score is defined
as

F1 =
2pr

p+ r
(3)

where the precision p is given as p =
tp

tp+ fp
and the

recall r is given as r =
tp

tp+ fn
, where tp is the number

of true positives, fp is the number of false positives, and
fn is the number of false negatives across the test set. The
F1 metric rewards moderately good performance on both
precision and recall over extremely good performance on
one at the expense of the other.

5.3. Results / Discussion of different models

We show the test-set overall F1 score for the various
multi-label classification methods described in section 4 .
Note that we do not have access to the true labels of the test
set due to the Kaggle competition - We can only upload
predictions on the test set and receive a computation of the
F1 score from the competition server:

Method F1 Score
Binary Relevance 0.67
Label Powerset 0.62
BP-MLL 0.75
Yelp Benchmark 0.64
Current leaderboard top score 0.83

Table 3: Test set F1 scores for various MLL methods
We see that BP-MLL gives the best performance across
the test set, followed by binary relevance and lastly label-
powerset. BP-MLL gives the best performance because it
is able to account for label correlations with complexity

linear in the number of output neurons. We see the binary
relevance is able to meet the benchmark, whilst label
powerset performed the worst. We hypothesize that this is
due to the larger number of output neurons needed for label
powerset, making the method more prone to overfitting the
training dataset compared to the other two techniques.

5.4. Performance of model using BP-MLL loss

We now focus on the performance of the best model that
uses BP-MLL loss. Precision, recall and F1-scores for each
label on a validation set of 10,00 samples are shown in
table 4 :

Label ID Precision Recall F1
0 0.65 0.27 0.38
1 0.79 0.83 0.81
2 0.82 0.88 0.85
3 0.54 0.58 0.56
4 0.73 0.66 0.69
5 0.84 0.92 0.88
6 0.86 0.96 0.90
7 0.71 0.54 0.61
8 0.78 0.75 0.76

Average 0.77 0.77 0.76

Table 4: Precision, Recall and F1 for BP-MLL model
We plot the distribution of label predictions over the test set
in figure 4. The frequencies of predicted test labels are also
reported in Table 5.

ID Label Name Relative Frequency
0 Good for lunch 0.0113
1 Good for dinner 0.7357
2 Takes reservations 0.8516
3 Outdoor seating 0.2830
4 Restaurant is expensive 0.0572
5 Has alcohol 0.9330
6 Has table service 0.9653
7 Ambience is classy 0.0260
8 Good for kids 0.7962

Table 5: Test Label Frequencies
We see that label ID 0 (”Good for lunch”) performs
the worst in terms of Recall and F1 Score. Thus, the
multi-label classifier gives a particularly large number of
false negatives for label 0. This can also be seen from the
test label frequencies, where label 0 has a particularly low
prediction frequency. It isn’t clear why the performance
and frequency of predictions for label 0 are particularly
low. Furthermore, we also see that the range of possible
labels predicted for the test set is not as diverse as is present
in the training set , as seen by comparing figure 4 and

5

Figure 4: Most frequent label sets (predicted) in test dataset

Figure 5: Predicted test set images in LUNCH cluster

Figure 6: Predicted test set pictures in DINNER cluster

figure 2. The label set [1,2,5,6,8] is predicted roughly
40% of the time, which explains the high frequency of
predictions in some labels and low frequency of predictions
in other labels as seen in table 5. It could be that the
network has learnt to predict a label set that is some com-
bination of the DINNER and LUNCH clusters most of time.

Earlier in section 3 we identified two main label clusters
corresponding to DINNER and LUNCH. We present a
few samples of test set images identified by the model
belonging to those label clusters in figures 5 and 6. We see
that the network is able to label images that generally seem
to belong to labels in the LUNCH cluster or the DINNER
cluster. More results can be seen in figure 10

There are some cases where the model predicts entirely
incorrect labels. A few cases from the training set are
shown in figure 7. We see that the model makes reasonable

Figure 7: Examples of incorrectly-predicted labels

errors. Taking the example of the image on the right of
figure 7, where what might be construed as ”good for
lunch” due to the presence of pancakes in the image might
actually be attributed to a more fancy restaurant that is
actually in the DINNER cluster. Similarly, looking at the
image on the left of figure 7, the network predicts the label
”has alcohol” possibly based on the presence of beer bottles
in the image, even though the establishment does not label
itself as such, possibly because the beer bottles were not
purchased at the restaurant. Looking at the failure cases of
the network, we hypothesize that the network assigns labels
by focusing on objects / textures that are detected locally,
and does not take into account the other image attributes
that might give an indication of the business labels such as
picture quality, cutlery/silverware arrangement and general
ambience cues of the restaurant.

In order to better visualize the performance of the classifier
in being able to assign and distinguish between the two
main label clusters, we run the t-SNE[25] algorithm using
sklearn[26] on the 4096-dimensional features extracted
from the second-to-last-layer of the modified VGG-16
network. We extract features for roughly 15,000 training
samples. The t-SNE plots for the DINNER label cluster
of [1,2,4,5,6,7] and the LUNCH label cluster of [0,3,8] is
shown in figure 8.

We see that network has learned an embedding on the data
manifold that is able to distinguish a subset of the DINNER
label cluster from data samples in the LUNCH cluster, as
can be seen in the lower-left, upper-right and edges of the
plot in figure 8. However, there are also other training cases
on the data manifold for which the network was not able
to achieve a clear separation between datapoints in the two
clusters, as can be seen in the middle portion of the same
figure. We also present t-SNE plots for all of the individual
labels in figure 9

6

Figure 8: t-SNE embedding of training samples for
LUNCH and DINNER label cluster

It is unlikely that the model trained using BP-MLL loss
overfit the training data set as the training process was
closely monitored such that the training loss and the
validation loss across all batches did not diverge too
much. The final training loss for the model was 0.65,
whereas the validation loss was 0.68, a difference of
5%. Thus, the validation loss being close to the training
loss indicates that the model has not overfit the train-
ing data set. We also see this in the similarity of the F1
scores on the test set and the validation set in Tables 3 and 4.

6. Conclusion / Future Work
In conclusion, we find that BP-MLL is able to provide a
boost in network performance (in terms of F1 score) over
binary relevance and label powerset methods. We obtain an
F1 score of 0.75 on the competition test set, and we find that
the trained network with BP-MLL loss is able to discern
high-level clusters such as label clusters corresponding to
dinner and lunch.

Future work includes exploring using BP-MLL loss with
fine-tuning of a more recent network architectures such as
ResNet[28] or GoogleNet[29]. There was some difficulty
in getting the weights from GoogleNet and ResNet to be
imported into Keras, and as such future explorations would
probably be easier to do in the Caffe[23] framework. In
addition to that, other methods for multi-label learning such
as binary relevance classifier chains [27] would also be of

interest.

In section 5.4 we hypothesized that the network assigns
labels by focusing more on locally-detected objects and
textures rather than global image features. Given more
time, we could use the model to produce saliency maps
to check if the model is actually attending to such local
objects and textures, as was done in [31]. It would be
interesting to train from scratch a classifier that takes in
features regarding picture quality[30] and combine with
the fine-tuned model that we have developed here into an
ensemble to see how much improvement can be obtained.

Lastly, it would be also be interesting to explore methods
to generate images based on the network that we have
trained on the Yelp dataset - For example, we could try
to deep-dream[32] images based on the later layers of the
network after fine-tuning those layers to find out if the
network actually ”dreams” of food-related objects.

7

Figure 9: t-SNE embedding of training samples for individ-
ual labels

Figure 10: Random samples of test set images predicted to
be in DINNER label set [1,2,4,5,6,7] or in the LUNCH set
[0,3,8]

8

References
[1] Keeler, James D., David E. Rumelhart, and Wee-Kheng Leow.

Integrated Segmentation and Recognition of Hand-Printed
Numerals. Microelectronics and Computer Technology Cor-
poration, 1991.

[2] Dietterich, Thomas G., Richard H. Lathrop, and Toms
Lozano-Prez. ”Solving the multiple instance problem with
axis-parallel rectangles.” Artificial intelligence 89.1 (1997):
31-71.

[3] Maron, Oded, and Toms Lozano-Prez. ”A framework for
multiple-instance learning.” Advances in neural information
processing systems (1998): 570-576.

[4] Dong, Lin. A comparison of multi-instance learning algo-
rithms. Diss. The University of Waikato, 2006.

[5] Tsoumakas, Grigorios, Ioannis Katakis, and Ioannis Vlahavas.
”Mining multi-label data.” Data mining and knowledge dis-
covery handbook. Springer US, 2009. 667-685.

[6] Tsoumakas, Grigorios; Katakis, Ioannis (2007). ”Multi-
label classification: an overview” (PDF). International
Journal of Data Warehousing & Mining 3 (3): 113.
doi:10.4018/jdwm.2007070101

[7] Zhang, Min-Ling, and Zhi-Hua Zhou. ”A review on multi-
label learning algorithms.” Knowledge and Data Engineering,
IEEE Transactions on 26.8 (2014): 1819-1837.

[8] Tsoumakas, Grigorios, and Ioannis Vlahavas. ”Random k-
labelsets: An ensemble method for multilabel classification.”
Machine learning: ECML 2007. Springer Berlin Heidelberg,
2007. 406-417.

[9] Zhang, Min-Ling, and Zhi-Hua Zhou. ”Multilabel neural net-
works with applications to functional genomics and text cat-
egorization.” Knowledge and Data Engineering, IEEE Trans-
actions on 18.10 (2006): 1338-1351.

[10] Grodzicki, Rafa, Jacek Madziuk, and Lipo Wang. ”Improved
multilabel classification with neural networks.” Parallel Prob-
lem Solving from NaturePPSN X. Springer Berlin Heidelberg,
2008. 409-416.

[11] Simonyan, Karen, and Andrew Zisserman. ”Very deep con-
volutional networks for large-scale image recognition.” arXiv
preprint arXiv:1409.1556 (2014).

[12] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton.
”Imagenet classification with deep convolutional neural net-
works.” Advances in neural information processing systems.
2012.

[13] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. ”Reduc-
ing the dimensionality of data with neural networks.” Science
313.5786 (2006): 504-507.

[14] Boutell, Matthew R., et al. ”Learning multi-label scene clas-
sification.” Pattern recognition 37.9 (2004): 1757-1771.

[15] Nam, Jinseok, et al. ”Large-scale Multi-label Text Classi-
ficationRevisiting Neural Networks.” Machine Learning and
Knowledge Discovery in Databases. Springer Berlin Heidel-
berg, 2014. 437-452.

[16] Dimou, Anastasios, et al. ”An empirical study of multi-label
learning methods for video annotation.” Content-Based Multi-
media Indexing, 2009. CBMI’09. Seventh International Work-
shop on. IEEE, 2009.

[17] ”Yelp Restaurant Photo Classification.” Data -. Web. 13
Mar. 2016. ¡https://www.kaggle.com/c/yelp-restaurant-photo-
classification/data¿.

[18] Tanner, Martin A., and Wing Hung Wong. ”The calculation
of posterior distributions by data augmentation.” Journal of
the American statistical Association 82.398 (1987): 528-540.

[19] LeCun, Yann, et al. ”Backpropagation applied to handwritten
zip code recognition.” Neural computation 1.4 (1989): 541-
551.

[20] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J.
Williams. ”Learning representations by back-propagating er-
rors.” Cognitive modeling 5.3 (1988): 1.

[21] Bastien, Frdric, et al. ”Theano: new features and speed im-
provements.” arXiv preprint arXiv:1211.5590 (2012).

[22] Francois Chollet, Keras, (2015), GitHub repository,
https://github.com/fchollet/keras

[23] Jia, Yangqing, et al. ”Caffe: Convolutional architecture for
fast feature embedding.” Proceedings of the ACM Interna-
tional Conference on Multimedia. ACM, 2014.

[24] Tieleman, Tijmen, and Geoffrey Hinton. ”Lecture 6.5-
rmsprop.” COURSERA: Neural networks for machine learn-
ing (2012).

[25] Van der Maaten, Laurens, and Geoffrey Hinton. ”Visualiz-
ing data using t-SNE.” Journal of Machine Learning Research
9.2579-2605 (2008): 85.

[26] Scikit-learn: Machine Learning in Python, Pedregosa et al.,
JMLR 12, pp. 2825-2830, 2011.

[27] Read, Jesse, et al. ”Classifier chains for multi-label classifi-
cation.” Machine learning 85.3 (2011): 333-359.

[28] He, Kaiming, et al. ”Deep Residual Learning for Image
Recognition.” arXiv preprint arXiv:1512.03385 (2015).

[29] Szegedy, Christian, et al. ”Going deeper with convolutions.”
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2015.

[30] Kang, Le, et al. ”Convolutional neural networks for no-
reference image quality assessment.” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.
2014.

[31] Xu, Kelvin, et al. ”Show, attend and tell: Neural im-
age caption generation with visual attention.” arXiv preprint
arXiv:1502.03044 (2015).

[32] Mahendran, Aravindh, and Andrea Vedaldi. ”Visualizing
Deep Convolutional Neural Networks Using Natural Pre-
Images.” arXiv preprint arXiv:1512.02017 (2015).

9

