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Abstract

We combine monocular depth estimation with motion
segmentation techniques to produce split-depth GIFs (GIF
is a common animated image format, and split-depth is a
technique to enhance the 3-D effect of the GIF by insert-
ing white bars that split the depth of the scene). We use a
deep convolutional neural field (DCNF) model to perform
monocular depth estimation, and also perform motion seg-
mentation using Gaussian Mixture Model for color cues and
Optical Flow for motion cues into a Markov Random Field.
We test the DCNF model on the NYU v2 dataset and find an
average relative error of 0.24 and a RMS error of 0.825. We
also compare the produced split-depth GIFs with a dataset
of manually-annotated ones to find an average recall of
0.94 and average precision of 0.83 in computing the fore-
ground/background pixels relevant to the split-depth level.
We find that combining motion segmentation with monocu-
lar depth estimation results in an increase in precision of
roughly 20% compared to solely using monocular depth es-
timation to generate the split-depth GIFs.

1. Introduction
GIF (Graphics Interchange Format) is a widespread file

format used to display and share video animations on the
internet, and easily lend themselves to modifications and
enhancements. One type of modification is to make a GIF
look more 3-dimensional by editing the GIF to include
white vertical reference bars that split the depth of the
scene in the GIF. We henceforth refer to such GIFs as ”split
depth GIFs”. Some (static) examples are shown below.

The effect is most pronounced when a main object is
approaching the viewer. The effect also seems to partially
stem from the ”window pane effect” that arises from
the combination of the white vertical lines with a white
background. The community that is interested in making
split-depth GIFs currently does so by manually creating
frame-by-frame masks using image editing software, which

Figure 1: Split-depth GIF example 1, from http://i.
imgur.com/ZaskDW7.gif

Figure 2: Split-depth GIF example 2, from http://
gfycat.com/AdeptSorrowfulIrishsetter

is particularly tedious. The main motivation for this project
would be to use computer vision techniques to produce a
pipeline/tool that can automatically generate convincing
split-depth GIFs instead.

The input to our system is a GIF of arbitrary resolution
and duration, and the output is the same GIF with added
vertical white bars which produce the split-depth effect.
We initially approached the problem as one of monocu-
lar (single-image) depth estimation, but later realized much
better results by segmenting the main moving objects in the
GIF as well.
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2. Related Work

2.1. Review of previous work

The two main computer vision methods used in our work
are monocular depth estimation and motion segmentation.

The classic work on monocular depth estimation was
done by Saxena [1], where a depth map is learned via
supervised training from a set of ground-truth RGB-D
images based on summary statistics of local image patches,
and uses a hierarchical, multiscale Markov Random Field
to account for local depth consistency. [2] showed that
incorporating information from semantic segmentation can
help with depth map prediction. Eigen et. al [3] used a
multi-scale deep convolutional network to predict a depth
map from a single image instead. [4] trained an end-to-end
deep CNN solution for converting 2D videos to 3D videos
based on a training set of 3D movies on a frame-by-frame
basis without incorporating temporal constraints. State-of-
the-art is [5] which combined a deep convolutional neural
network with a conditional random field to learn a depth
mapping for single images, which is what we use for this
work. [6] pursues an alternate approach of recovering depth
from an estimation of the defocus map of a single image.

A good review of motion segmentation techniques can
be found in [7]. A basic approach is to segment the moving
object via a Markov Random Field on the Optical Flow
of the video frames, as was done in [8]. [9] additionally
includes estimated depth information as well. [10] extends
this work by also learning a Gaussian Mixture Model of
color cues for the moving objects to provide better segmen-
tation performance, and is the main model that we use in
this work. [11] also improves on this by presenting a fast
online algorithm for motion segmentation. State-of-the-art
is given in [12] where a convolutional network is trained
on image and motion fields to detect moving objects and
discard over/under segmentations or background parts of a
scene.

2.2. Key contributions of current work

The current work is focused on applying existing com-
puter vision work and tools to solve an existing problem
(creation of split-depth GIFs), and so the current work does
not extend the current state-of-the-art. Rather, our work is
novel in the sense that there does not currently exist a tool
to programatically create such split-depth GIFs, and so our
current work is a proof-of-concept for such a solution. Our
main contribution is to apply current state-of-the-art models
for monocular depth estimation and motion segmentation
to solve this problem, and investigate the limitations of
those models in this context.

3. Technical Solution
3.1. Summary of technical solution

Our pipeline for producing split-depth GIFs is as follows :

1. Process the input GIF to obtain its constituent frames

2. For each frame, calculate the optical flow from the pre-
vious frame to obtain initial estimates of moving object
segmentation using a Markov Random Field.

3. Learn a Gaussian Mixture Model from pixel colors of
the initial estimates of the moving object, and use this
to refine the moving object segmentation via another
pass through the GIF frames.

4. For each frame, estimate a depth map for the frame us-
ing a pre-trained deep convolutional neural field model
as given in [5]

5. Set a placement for the two vertical white bars, and a
reference depth.

6. For each frame, create a mask that reveals the pixels
on the white bars only if the pixel depth is below the
reference depth and belongs to the moving object.

This is summarized in figure 3. There are currently sev-
eral parameters that need to be tuned in the process to obtain
a convincing split-depth GIF. These are :

• Optical Flow Smoothness and Threshold Parameters

• Motion Segmentation Markov Random Field Parame-
ters

• Placement of vertical white bars

• Reference depth

3.2. Details of technical solution

3.2.1 Motion Segmentation

We implement the techniques presented in [10]. After
extracting frames from the GIF, we calculate the an optical
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flow field for each frame using the vision.OpticalFlow
function in Matlab’s vision toolbox. The optical flow field
is computed using the Horn-Schunck method [13], with
smoothness being the primary variable parameter.

We then threshold the optical flow field to obtain a
binary mask that is an initial motion cue estimate of the
moving object in the GIF. This motion cue is sparse is often
only indicates the boundary of the moving object. To solve
this issue we use a Markov Random Field (MRF) to take
into account the fact that neighboring pixels are likely to
have the same label, and neighboring pixels with similar
colors are more likely to have the same label.

The pairwise potentials of the MRF are given as

ψ(li, lj) = exp
( λlilj
α+ d(i, j)

)
(1)

where li is the label for pixel i with li = 1 if pixel
i belongs to a moving object and li = −1 otherwise.
λ and α are tunable parameters, and d(i, j) is a color
distance measure between pixels i and j, which we
set to be the weighted euclidean color distance [14]
d(i, j) =

√
3(Ri −Rj)2 + 4(Gi −Gj)2 + 2(Bi −Bj)2.

Ri is the red color value for pixel i, and similarly Gi for
green and Bi for blue.

The unary potentials for the MRF are given as

p(fi|li) = pm(ofi|li) = exp
(
li(ofi − δm)

)
(2)

where fi is the feature of pixel i (specifically the optical
flow in this case), and ofi is the value of the optical flow
field at pixel i. δm is a parameter.

Thus, given the above MRF potentials, moving object
segmentation for an image frame I can be achieved by find-
ing the labeling L that maximizes the posterior

P (L|I) ∝
∏
i∈I

p(fi|li)
∏
i∈I

∏
j∈Ni

ψ(li, lj) (3)

where Ni is the set of 4-connected neighborhood pixels
around pixel i. We solve the optimization via graph cut
algorithms. Specifically, we use the GCMEX [15] Matlab
wrapper, which implements graph cuts based energy
minimization techniques described in [16] [17] [18].

After using the graph cut algorithm to get a segmentation
of the moving object, we train a Gaussian Mixture Model
(GMM) Gf on the RGB pixel values of the moving object
using an expectation-maximization algorithm with an ag-
glomerative clustering strategy to estimate the optimal num-
ber of components. This is done using the CLUSTER pack-
age [19]. The affinity of a pixel with color c to the moving

object Gf is estimated as

affic(c) = maxgj∈Gf

[
gj(c)

]
(4)

gj(c) =
pj√
|Σj |

exp
(
− 1

2
(c− µj)

T Σ−1j (c− µj)
)

(5)

where gj is the j-th component of the Gaussian Mixture
Model Gf . pj is the corresponding prior probability, Σj is
the covariance matrix and µj is the mean vector. We then
define a likelihood model based on this affinity as

pc(ci|li) = exp
(
li(log(affic(ci))− δc)

)
(6)

where δc is a parameter.

Thus, we extend the unary potential presented in equa-
tion 2 to include the moving object color GMM as follows
:

log(p(fi|li)) = log(pm(ofi|li)) + λclog(pc(ci|li)) (7)

We then solve the MRF using the graph cut algorithm as
was done previously to obtain the final segmentation of the
moving object in the GIF.

3.2.2 Monocular Depth Estimation

We use the pre-trained model provided by [5] to perform
monocular depth estimation on each frame of the GIF. The
architecture of the model is shown in figure 3.

Figure 3: Deep Convolutional Neural Field architecture
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The input image is first over-segmented into superpixels.
To compute unary potentials zp for each superpixel, an im-
age patch centered around its centroid is cropped, resized,
and fed into a CNN composed of 5 convolutional and 4
fully-connected layers. To compute pairwise potentials
Rpq , K types of similarities are computed for each pair of
neighboring superpixels p,q and fed into a fully-connected
layer. Thus, given the unary and pairwise potentials, the
loss for a CRF can be computed, and the whole network
can be optimized/trained by minimizing the negative
log-likelihood of the data. To predict the depth y of a new
image x, the conditional probability P (y|x) is maximized
as follows :

Let A = I+D−R, where I is the n×n identity matrix,
R is the affinity (pairwise potential) matrix composed of
Rpq , and D is the diagonal matrix with Dpp =

∑
q Rpq .

With z as the unary potentials, the CRF energy function can
thus be written as

E(y,x) = yTAy − 2zTy + zT z (8)

and we thus have the predicted depth map as

y∗ = argmaxyP (y|x) (9)
= argminyE(y,x) (10)

= A−1z (11)

4. Experiments and Results
4.1. Unused Explorations

In this subsection we present some findings from
techniques that we initially investigated but ultimately did
not use in the final pipeline.

We downloaded various models from [3], [5], [6], [4]
and [28], and also implemented a basic version of the
algorithm as presented in [1]. One of the limitations of all
of the models is that they are trained on a limited number
of datasets - The most common datasets are Make3D[29]
and NYU v2 Depth [30] datasets, where the former consist
of outdoor college campus scenes and the latter consist of
indoor house and office scenes. Since GIF scenes span a
variety of situations, the less sophisiticated models used
in [28], [1] and [3] did not display good generalization to
scenes that were not similar to the datasets that they were
trained on, and the depth maps generated were not accurate
enough to isolate a general foreground object in an image
frame from the background. [6] only works well with
images that have a defocused background or foreground.

[4] shows decent results for predicting depth from a
single image. The model is a CNN that predicts a right-eye
image given an input (left-eye) image, with the model

trained from a dataset of 3D movies. Initial attempts
at estimating a disparity/depth map calculated from the
left-eye and right-eye images yielded poor results. This
is because the model constructs a right-eye image from
multiple probabilistic depth representations from internal
CNN layers. Thus, the internal depth representations give
a more accurate representation of the depth map calculated
by the model. I was able to extract the activations from
the internal layers to obtain the probabilistic depth maps as
shown in figure 4. However, we chose to not use this model
in favor of [5] instead as we were able to obtain more
accurate results with the latter. Part of this is the limited
depth resolution of this model due to the limited number of
depth levels.

Figure 4: Internal CNN probabilistic depth representation
of [4]. Heatmaps represent probability that pixel belongs to
that level, lower level corresponds to distance being closer
to camera

4.2. Motion Segmentation

Figure 5: Motion Segmentation Example. Left : Original
Frame. Middle : Thresholded Optical Flow Field. Right :
Final Segmentation Results

An example of the result of the motion segmentation
algorithm is presented in figure 5. The corresponding GIFs
can be found at http://imgur.com/9xnvavQ and
http://imgur.com/JnrJXHs.

We can see that the motion segmentation manages to
segment the moving object most of the time, but usually

4

http://imgur.com/9xnvavQ
http://imgur.com/JnrJXHs


over-segments the object and ends up segmenting some of
the background as well. [10] addresses this by determining
the component in the Gaussian Mixture Model that corre-
sponds to the background and removing it from the model,
but this was not implemented due to time constraints.

4.3. Monocular Depth Estimation

Figure 6: Example deep convolutional neural field depth
maps. Heatmap represents distance from camera

We show the result of evaluating the pre-trained deep
convolutional neural field model on several images in figure
6. The model is implemented using the MatConvNet [20]
library. We see that the model is sophisticated enough to
be able to predict depth maps across a variety of scenes.
We also test the model on the NYU v2 [30] dataset, which
contains a variety of indoor scenes annotated with depth
data. We find that the model gives an average relative
error of 0.24, and a RMS error of 0.825, where the average

relative error is defined as
1

T

∑
p

|dgtp − dp|
dgtp

and RMS error

is defined as

√
1

T

∑
p(dgtp − dp)2. Here dgtp and dp are

the ground-truth and predicted depths respectively at the
pixel p, and T is the total number of pixels in all evaluated
images. This is similar the results presented in [5].

4.4. Generation of split-depth GIFs

We present key frames of several GIFs that we convert
to split-depth GIFs in figure 7. The actual GIFs can be
found at http://imgur.com/a/fE7hs. We see that
for certain types of scenes, our pipeline is qualitatively able

Figure 7: Sample key frames from generated split-depth
GIFs.

to generate convincing split-depth GIFs that enhance the
3-D effect.

To quantify the quality of the generated split-depth
GIFs, we compare a dataset of generated GIFs with
hand-annotated versions by the community at the website
http://reddit.com/r/splitdepthgifs. We
use binary classification metrics to quantify the perfor-
mance. For pixels of the vertical white bars, we define
a true positive as a pixel being correctly classified as
foreground (in front of the vertical white bars), and a true
negative as a pixel being correctly classified as background
(behind the vertical white bars). From this, we get a
precision of 0.94 and recall of 0.83. In evaluating the
metric, it must be kept in mind that the moving object
spends a majority of the GIF behind the vertical white
bars, and so we would expect to get a relatively high preci-
sion since most of the time the pixels are background pixels.

One key point is that motion segmentation greatly en-
hances the performance of the algorithm. For example, in
figure 8 we see that just using the estimated depth map
(which can also be seen in figure 6) results in placing a por-
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Figure 8: Generated GIF frame without (Left) and with
(Right) moving object segmentation.

Figure 9: Precision and Recall with and without motion seg-
mentation

tion of the background in front of the vertical white lines.
The main insight is that the split-depth effect is most effec-
tive when only the depth of the moving object is split, but
not the depth of the background. Thus, by performing mo-
tion segmentation, the quality of split-depth GIFs is greatly
improved. This can also be seen in figure 9, where not using
motion segmentation results in a noticeably lower precision
due to the large increase in false positives (pixels that should
be hidden, but are instead revealed).
‘

5. Conclusions and Future Work

We have demonstrated a system to programatically
generate split-depth GIFs. We use a deep convolutional
neural field to perform monocular depth estimation on each
frame of the GIF, and combine this motion segmentation
via a Markov Random Field on optical flow motion cues
and learned Gausian Mixture Model color cues. Our
approach works best with scenes that have a static camera
and moving object that approaches the camera sufficiently
close to allow for a good ”splitting” of the depth of the
scene. We find that segmentation of the moving object is
crucial in producing a convincing split-depth GIF, as the
main point is the split the depth of the moving foreground
object, but not that of the background.

The motion segmentation method used in this work
can be improved upon as in [10] where the background
is additionally learned and subtracted from the Gaussian
Mixture Model, or [12] where a CNN is used for motion
segmentation instead. This would improve the quality of
the generated GIFs.

Furthermore, the current pipeline involves manual
tuning of several parameters such as the optical flow,
graph cut and vertical white bar placement parameters in
order to create convincing GIFs. Future work would also
involve finding methods to reduce the necessity of manual
parameter tuning, such as automating placement of the
vertical white bars by maximizing the variance of the scene
hidden by them while regularizing by temporal smoothness.

Lastly, our system involves combining data from two
disparate systems for depth estimation and motion segmen-
tation as can be seen in figure 3. An better system would
be to train an end-to-end convolutional neural field across
time to predict both depth and motion segmentation from
an input video stream.

For code, please see https://www.
dropbox.com/sh/2qiiahwj4z75xvu/
AABzmtv9qHhAVNfZSNaOFgnja?dl=0.
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