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1 Introduction

There are a large number of public live webcams that are accessible over the internet. A variety of content and objects
from various places all around the world are being recorded by these webcams in real-time, but it is not feasible for a
single person to browse through all of the webcams to search for content that is of interest. Our project aims to use
Machine Learning algorithms to cluster and identify webcams of interest out of a large pool of webcams. This has
relevance to security, surveillance and exploration applications where there is a need to filter through a large number
of video streams to detect objects of interest.

The input to our system is a stream of images from multiple webcams. For each webcam image, we use a Gaussian
mixture model to model the background image, use to background model to extract foreground objects from the
webcam image, and use a convolutional neural network to classify the detected objects. The output of our system
is a display list of the top 5 webcams as ranked by the scoring algorithm for the webcams, which can be changed
depending on the user input query. We also use K-means clustering to explore the different categories of webcams that
exist in our dataset.

2 Related Work

Several groups have previously looked at exploring and characterizing the network of webcams around the world. A
previous effort was made to discover and characterize the locations and categories of webcams [1] based on their geo-
IP addresses and links from existing GIS databases. Our current work extends this effort to try to characterize webcams
where there does not exist clean metadata and descriptions of the webcams. There has also been work in the area of
image fusion [2] of webcam images with data from Google StreetView and Google Earth images to provide additional
context to existing images from a webcam. This was more aimed towards providing improved location-based services
for mobile applications, whereas our work focuses on alerting webcams solely based off their data streams.

The closest and most relevant previous work is real-time abnormality detection from multiple webcams [4], where
a nearest-neighbor model is used to create an image abnormality classifier based on simple image features. The
distance/similarity metric used for nearest-neighbors clustering is based on outliers relative to a sample of past webcam
images from varying time intervals, and is primarily based on image quadrants in a picture. Our work extends this
by showing that it is possible to use object tracking methods by working on a pixel level instead of a quadrant level
to detect objects, and our work differs in that our interest metric is primarily tied to the activity of a scene instead of
abnormality relative to past images.

Other related work is person identification from webcam images via semi-supervised learning [3], where facial features
are extracted from webcam images to locate track the position of people in those images. Our approach differs from
this aspect in that we aim to track multiple kinds of objects instead. Work has also been done in using webcams to
detect and monitor birds in the wild [5] using a median filter by defining the background as the median of the previous
N frames. Our work uses a different method (model background as Gaussian mixture model) for object detection
instead.

3 Dataset and Features

Our data set consists of images logged from approximately 2000 publicly accessible, non-password-protected we-
bcams, where query urls were scraped from the website opentopia.com [6]. Although we would ideally run our
algorithms directly on live webcam streams, the bandwidth required to simultaneously process a meaningful number
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of webcams was prohibitively high. As a result, we logged images from those 2000 webcams every 5 minutes over a
period of 1 week, and ran our algorithms on that dataset.

The raw webcam images vary greatly in resolution - From as low to 240 x 180 to as high as 2048 x 1536. We log
the webcam images in their native resolution for processing flexibility later on, and resize them to smaller resolutions
(typically 300 x 300) as input into our system. Sample images from some webcams are shown below in figure 1.

The features varied for our initial attempts at clustering and in our main effort of classification. For clustering, we used
a Bag-of-Features model (akin to the Bag-of-Words model which is common in language). The seed of these features
are SIFT descriptors. We will go more in depth about how we generated these features in the Methods section. For
classification, we used the patches of images containing moving objects found through background subtraction as our
features. These patches were rescaled to 224 x 224 before being passed to the network.

Figure 1: Sample webcam images

4 Methods

4.1 Webcam ranking

In order to rank webcams based on the activity of the objects recorded, it is necessary to separate foreground objects
from the image background. To do this, we use OpenCV’s [7] BackgroundSubtractorMOG2() method to construct a
background model for each pixel, and use it to classify pixels as foreground or background. The method implements
the algorithm described in a paper by Zivkovic [8] for background subtraction. The model is a generative model that
uses a Gaussian mixture model (GMM) to model the background color distribution for each pixel.

Let ~x(t) be the value of a pixel at time t, and let T be a time period over which samples are recorded. Define the
training data set χT = {~x(t), ..., ~x(t−T )}. χT is updated with each new sample. An estimate of the background (BG)
and foreground (FG) distribution can be modeled by a GMM with M components :

p̂(~x(t)|χT , BG+ FG) =

M∑
m=1

π̂mN (~x; ~̂µm, σ̂
2
mI) (1)

where ~̂µ1, .., ~̂µm are mean estimates and σ̂1, ..., σ̂m are variance estimates. π̂m are the mixing weights that are non-
negative and sum to 1. Given a new data sample ~x(t), the parameters of the model can be updated recursively as [9]:

π̂m ← π̂m + α(o(t)m − π̂m) (2)

~̂µm ← ~̂µm + o(t)m (α/π̂m)~δm (3)

σ̂2
m ← +o(t)m (α/π̂m)(~δTm

~δ − σ̂2
m) (4)

where ~δ = ~x(t) − ~̂µm, α is an exponential decay factor such that α ≈ 1/T to limit influence of old data, and o(t)m is
defined as the ”ownership”. For a new sample, o(t)m is set to 1 for the ’closest’ component with largest π̂m and others
are set to zero, where ’closest’ is based on the mahalanobis distance metric. The squared distance from the m-th
component is calculated as D2

m(~x(t)) = ~δTm
~δm/σ̂

2
m.

Foreground objects usually correspond to some additional clusters with small weights π̂m. Thus, the background
model can be approximated by the first B largest clusters

p(~x|χ,BG) ∼
B∑

m=1

π̂mN (~x; ~̂µm, σ̂
2
mI) (5)
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We use the background model to classify each pixel in the image as either being part of the foreground or background
to obtain a foreground mask. We then fit contours around the sections of foreground object pixels using OpenCV’s
findContours() method. The contours are filtered based on size - Contours that are too small (< 1% of picture area) are
attributed to noise, contours that are too large (>20% of picture area) are attributed to pixel changes due illumination
or webcam position, which are not of interest.

A webcam’s score is then calculated as the sum of contour areas as a percentage of the image size divided by the sum
of contour arc lengths, Score = total contour area % / total contour length. We maximize for contour area to be able to
show the largest / most number of objects after filtering. We minimize for contour length to reward convexity, as we
found that large noisy artifacts in the webcam images tended to be highly non-convex in shape.

4.2 Clustering

The most involved operation in clustering our webcams was extracting the features. We wanted to capture semantic
information about the webcams, and therefore needed features which captured semantic information from frames.
We decided to base our features off of SIFT descriptors [10]. These descriptors are scale, translation, and rotation
invariant. Furthermore, they are robust to lighting changes or slight deformation. These properties are desirable for
our application, as objects will appear under different conditions in our webcams. Given an image, one can extract
multiple SIFT descriptors, each of which corresponds to some local feature of the image. Each descriptor is a vector
in R128.

With this machinery, we will illustrate a method for extracting features from each webcam. First, we generate the
visual vocabulary by first sampling random frames from every webcam and extracting SIFT descriptors, and then
clustering the descriptors using k-means. The resulting cluster centroids are the words in our vocabulary. Then, we
compute the feature vectors for each webcam by extracting SIFT descriptors fram a random subset of frames from
each webcam and computing a histogram of the closest vectors in the vocabulary to the descriptors we extracted. The
resulting histogram is the feature we use to represent the webcam.

Finally, we cluster the webcams’ corresponding features using k-means using initial clusterings chosen by k-means++
[11]. In k-means++, each initial cluster center is chosen from a weighted distribution over the dataset, where the
weight corresponding to a certain point is the squared distance between that point and the closest initial centroid we
have chosen so far. The first initial centroid is chosen uniformly at random from all of the points. The resulting clusters
are the different unlabeled categories for our webcams.

4.3 Convolutional Neural Network

4.3.1 Network

We used a modified version of the BLVC Reference CaffeNet [12], which is a slightly modified version of AlexNet
[13]. This network features around 60 million parameters and 500,000 neurons. There are five convolutional layers,
some of which are followed by max-pooling layers, then two fully connected layers, and finally a 3-way softmax. The
only difference between our network and the BLVC Reference CaffeNet is that our softmax layer produces 3 outputs,
whereas theirs produces 1000.

4.3.2 Dataset

Our dataset consists of hand-labeled patches from a random subset found using our previously described moving object
detector. This dataset consists of 9776 examples total, 142 (1.453%) of which are humans, 249 (2.547%) of which are
vehicles, and 9385 (96.000%) of which are noise. We separated this into a training set and a testing set. The training
set consists of 90% examples randomly sampled from each class, and the test set consists of the remaining examples.

4.3.3 Training

We fine-tuned the pretrained BLVC Reference CaffeNet on our dataset. The model was pretrained on the ILSVRC
2012 dataset by Jeff Donahue. We then fine-tuned the model on our dataset, using a base learning rate of 0.001 for the
original layers and a learning rate of 0.02 for the final softmax layer. We trained the network for a few hours using a
single 980 TI.
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5 Results / Discussion

5.1 Webcam ranking

We present 2 sample snapshot results of the top 4/1000 webcams as ranked by our scoring algorithm in Figure 2. The
webcam images with detected objects are shown on the top row, and the corresponding background images as learnt
by the model are shown on the bottom row.

Figure 2: Snapshot of top 4/1000 webcams from run 1 (left) and run 2 (right)

We see that the algorithm returns qualitatively acceptable results - It is able to highlight clear changes and rise in
activity of webcams, such as people filling into a room, street lights being switched off and changes in weather or
traffic conditions.

Even though we perform filtering on contours and on the scoring function to try to eliminate noise, there are still
occurrences where our algorithm is influenced by image, lighting or webcam noise and ranks certain webcam images
highly when there are no noticeable activity or changes. Several examples of webcam images that were erroneously
ranked in the top 5/1000 are shown below in figure 3 :

Figure 3: Examples of erroneously highly-ranked webcam images

5.2 Clustering

The results of clustering were lackluster. We found that the number of clusters played a large role in the expressiveness
of the clusters. Too many clusters produced overly noisy clusters. Too few clusters produced overly broad clusters.
With a moderate number of clusters, we did see some meaningful categories. For instance, we produced an animal
cluster, which contained images of cats and dogs. However, this category was not exclusive. While it contained
a disproportionately large number of webcams featuring animals, it also contained unrelated webcams. While the
clustering did produce some clear results, we deemed them to be too noisy for useful categorization. Figure 4 shows
an example of a cluster produced:

4



Figure 4: Cluster Contents (all webcams are represented, animal webcams are highlighted)

5.3 CNN Filtering

Our filtering results were promising. We have three primary interests. First, we want to filter out as many noisy
detections as possible. Secondly, since there are proportionally few examples of vehicles and humans, a high recall
percentage was desirable. Third, we wanted to use the convnet for search and clustering, so precision was also
important. Our CNN produced the following results on the held-out test set:

Class Precision Recall Percentage of Dataset Percentage of Filtered Dataset
Human 69.2% 64.3% 1.453% 28.7%
Vehicle 73.9% 68.0% 2.547% 48.6%
Noise 97.8% 99.1% 96.000% 22.9%

For our applications, these results are extremely useful. High precision and recall for objects of interest mean that
searching and clustering are possible. Although an even higher precision is desirable, our current numbers are still
high considering the dataset makeup. Furthermore, the filtered dataset only contains 22.9% noise, which is much
lower than the original dataset which was comprised of 96% noise. Thus, the top-5 most interesting webcams are
significantly more likely to contain objects of interest when filtered.

Our network produced the following confusion matrix:

Correct Label
Predicted Label Human Vehicle Noise
Human 0.692 0.0 0.308
Vehicle 0.043 0.739 0.217
Noise 0.004 0.008 0.987

The confusion matrix tells us that incorrect predictions on humans and vehicles are generally not helpful. That is,
incorrect predictions usually lead to inclusion of noise rather than an object of interest of another class.

6 Future Work

One of the main bottlenecks to this project was the amount of GPU memory available to store webcam images. In
order to be able to detect objects reliably, it is necessary to have a minimum image resolution. However, the GPU
memory required to store the background model image for each webcam increases as the image resolution increases.
At an image resolution of 300 x 300, we were able to simultaneously process a maximum of 1000 webcam images at
a time. Given extra computational resources, we would apply our system to the all 2000 webcams in the dataset.

There are a few avenues that we can take in the future with regards to the CNN. First, we could tweak the criteria for
selecting which label to predict based on the probabilities output by the network. This could lead to better precision
and recall, or a better tradeoff between the two. If so, we would shard our dataset so that we can dynamically choose
training, testing, and validation sets, allowing us to validate choices of different hyperparameters. Furthermore, we
could collect more data as there are relatively few positive examples for both of our objects of interest. This would
give us better estimates of our metrics as well as better generalization. Furthermore, we could support better clustering
as well as search by using the data filtered and labeled by the convnet.
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